forked from M-Labs/nalgebra
638 lines
13 KiB
Rust
638 lines
13 KiB
Rust
//! **nalgebra** prelude.
|
||
|
||
use std::num::{Zero, One};
|
||
pub use traits::{
|
||
Absolute,
|
||
AbsoluteRotate,
|
||
AlgebraicVec,
|
||
AlgebraicVecExt,
|
||
Basis,
|
||
Cast,
|
||
Col,
|
||
Cov,
|
||
Cross,
|
||
CrossMatrix,
|
||
Dim,
|
||
Dot,
|
||
FromHomogeneous,
|
||
Indexable,
|
||
Inv,
|
||
Iterable,
|
||
IterableMut,
|
||
LMul,
|
||
Mat,
|
||
Mean,
|
||
Norm,
|
||
Outer,
|
||
RMul,
|
||
Rotate, Rotation, RotationMatrix, RotationWithTranslation,
|
||
Row,
|
||
ScalarAdd, ScalarSub,
|
||
ToHomogeneous,
|
||
Transform, Transformation,
|
||
Translate, Translation,
|
||
Transpose,
|
||
UniformSphereSample,
|
||
Vec,
|
||
VecExt
|
||
};
|
||
|
||
pub use structs::{
|
||
Identity,
|
||
DMat, DVec,
|
||
Iso2, Iso3, Iso4,
|
||
Mat1, Mat2, Mat3, Mat4,
|
||
Mat5, Mat6,
|
||
Rot2, Rot3, Rot4,
|
||
Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6
|
||
};
|
||
|
||
//
|
||
//
|
||
// Constructors
|
||
//
|
||
//
|
||
|
||
/// Create a special identity object.
|
||
///
|
||
/// Same as `Identity::new()`.
|
||
#[inline(always)]
|
||
pub fn identity() -> Identity {
|
||
Identity::new()
|
||
}
|
||
|
||
/// Create a zero-valued value.
|
||
///
|
||
/// This is the same as `std::num::zero()`.
|
||
#[inline(always)]
|
||
pub fn zero<T: Zero>() -> T {
|
||
Zero::zero()
|
||
}
|
||
|
||
/// Create a one-valued value.
|
||
///
|
||
/// This is the same as `std::num::one()`.
|
||
#[inline(always)]
|
||
pub fn one<T: One>() -> T {
|
||
One::one()
|
||
}
|
||
|
||
//
|
||
//
|
||
// Geometry
|
||
//
|
||
//
|
||
|
||
/*
|
||
* Perspective
|
||
*/
|
||
/// Computes a projection matrix given the frustrum near plane width, height, the field of
|
||
/// view, and the distance to the clipping planes (`znear` and `zfar`).
|
||
pub fn perspective3d<N: Real + Cast<f32> + Zero + One>(width: N, height: N, fov: N, znear: N, zfar: N) -> Mat4<N> {
|
||
let aspect = width / height;
|
||
|
||
let _1: N = one();
|
||
let sy = _1 / (fov * cast(0.5)).tan();
|
||
let sx = -sy / aspect;
|
||
let sz = -(zfar + znear) / (znear - zfar);
|
||
let tz = zfar * znear * cast(2.0) / (znear - zfar);
|
||
|
||
Mat4::new(
|
||
sx, zero(), zero(), zero(),
|
||
zero(), sy, zero(), zero(),
|
||
zero(), zero(), sz, tz,
|
||
zero(), zero(), one(), zero())
|
||
}
|
||
|
||
/*
|
||
* Translation<V>
|
||
*/
|
||
|
||
/// Gets the translation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::types::{Vec3, Iso3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
|
||
/// let trans = na::translation(t);
|
||
///
|
||
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn translation<V, M: Translation<V>>(m: &M) -> V {
|
||
m.translation()
|
||
}
|
||
|
||
/// Gets the inverse translation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::types::{Vec3, Iso3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
|
||
/// let itrans = na::inv_translation(t);
|
||
///
|
||
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_translation<V, M: Translation<V>>(m: &M) -> V {
|
||
m.inv_translation()
|
||
}
|
||
|
||
/// Appied the translation `v` to a copy of `m`.
|
||
#[inline(always)]
|
||
pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
|
||
Translation::append_translation_cpy(m, v)
|
||
}
|
||
|
||
/*
|
||
* Translate<V>
|
||
*/
|
||
|
||
/// Applies a translation to a vector.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::na::{Vec3, Iso3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
|
||
/// let v = Vec3::new(2.0, 2.0, 2.0);
|
||
///
|
||
/// let tv = na::translate(&t, &v);
|
||
///
|
||
/// assert!(tv == Vec3::new(3.0, 3.0, 3.0))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
||
m.translate(v)
|
||
}
|
||
|
||
/// Applies an inverse translation to a vector.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::na::{Vec3, Iso3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
|
||
/// let v = Vec3::new(2.0, 2.0, 2.0);
|
||
///
|
||
/// let tv = na::translate(&t, &v);
|
||
///
|
||
/// assert!(tv == Vec3::new(1.0, 1.0, 1.0))
|
||
/// }
|
||
#[inline(always)]
|
||
pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
|
||
m.inv_translate(v)
|
||
}
|
||
|
||
/*
|
||
* Rotation<V>
|
||
*/
|
||
|
||
/// Gets the rotation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::na::{Vec3, Rot3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Rot3::new(Vec3::new(1.0, 1.0, 1.0));
|
||
///
|
||
/// assert!(na::rotation(t) == Vec3::new(1.0, 1.0, 1.0));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||
m.rotation()
|
||
}
|
||
|
||
|
||
/// Gets the inverse rotation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::na::{Vec3, Rot3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Rot3::new(Vec3::new(1.0, 1.0, 1.0));
|
||
///
|
||
/// assert!(na::inv_rotation(t) == Vec3::new(-1.0, -1.0, -1.0));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||
m.inv_rotation()
|
||
}
|
||
|
||
// FIXME: this example is a bit shity
|
||
/// Applies the rotation `v` to a copy of `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::na::{Vec3, Rot3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0, 0.0, 0.0));
|
||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||
/// let rt = na::append_rotation(&t, &v);
|
||
///
|
||
/// assert!(na::rotation(&rt) == Vec3::new(1.0, 1.0, 1.0))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||
Rotation::append_rotation_cpy(m, v)
|
||
}
|
||
|
||
// FIXME: this example is a bit shity
|
||
/// Pre-applies the rotation `v` to a copy of `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::na::{Vec3, Rot3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0, 0.0, 0.0));
|
||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||
/// let rt = na::preend_rotation(&t, &v);
|
||
///
|
||
/// assert!(na::rotation(&rt) == Vec3::new(1.0, 1.0, 1.0))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||
Rotation::prepend_rotation_cpy(m, v)
|
||
}
|
||
|
||
/*
|
||
* Rotate<V>
|
||
*/
|
||
|
||
/// Applies a rotation to a vector.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::na::{Rot3, Vec3};
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Rot3::new(Vec3::new(1.0, 0.0, 0.0));
|
||
/// let v = Vec3::new(0.0, 0.0, na::pi() / 2.0);
|
||
///
|
||
/// let tv = na::rotate(&t, &v);
|
||
///
|
||
/// assert!(tv == Vec3::new(0.0, 1.0, 0.0))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||
m.rotate(v)
|
||
}
|
||
|
||
|
||
/// Applies an inverse rotation to a vector.
|
||
///
|
||
/// ```rust
|
||
/// extern mod nalgebra;
|
||
/// use nalgebra::na;
|
||
///
|
||
/// pub main() {
|
||
/// let t = Rot3::new(Vec3::new(1.0, 0.0, 0.0));
|
||
/// let v = Vec3::new(0.0, 0.0, na::pi() / 2.0);
|
||
///
|
||
/// let tv = na::rotate(&t, &v);
|
||
///
|
||
/// assert!(tv == Vec3::new(0.0, -1.0, 0.0))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||
m.inv_rotate(v)
|
||
}
|
||
|
||
/*
|
||
* RotationWithTranslation<LV, AV>
|
||
*/
|
||
|
||
/// Rotates a copy of `m` by `amount` using `center` ase the pivot point.
|
||
#[inline(always)]
|
||
pub fn append_rotation_wrt_point<LV: Neg<LV>,
|
||
AV,
|
||
M: RotationWithTranslation<LV, AV>>(
|
||
m: &M,
|
||
amount: &AV,
|
||
center: &LV) -> M {
|
||
RotationWithTranslation::append_rotation_wrt_point_cpy(m, amount, center)
|
||
}
|
||
|
||
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
|
||
#[inline(always)]
|
||
pub fn append_rotation_wrt_center<LV: Neg<LV>,
|
||
AV,
|
||
M: RotationWithTranslation<LV, AV>>(
|
||
m: &M,
|
||
amount: &AV) -> M {
|
||
RotationWithTranslation::append_rotation_wrt_center_cpy(m, amount)
|
||
}
|
||
|
||
/*
|
||
* RotationMatrix<LV, AV, R>
|
||
*/
|
||
|
||
/// Builds a rotation matrix from `r`.
|
||
#[inline(always)]
|
||
pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, AV, M>>(r: &R) -> M {
|
||
r.to_rot_mat()
|
||
}
|
||
|
||
/*
|
||
* AbsoluteRotate<V>
|
||
*/
|
||
|
||
/// Applies a rotation using the absolute values of its components.
|
||
#[inline(always)]
|
||
pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
|
||
m.absolute_rotate(v)
|
||
}
|
||
|
||
/*
|
||
* Transformation<T>
|
||
*/
|
||
|
||
/// Gets the transformation applicable by `m`.
|
||
#[inline(always)]
|
||
pub fn transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||
m.transformation()
|
||
}
|
||
|
||
/// Gets the inverse transformation applicable by `m`.
|
||
#[inline(always)]
|
||
pub fn inv_transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||
m.inv_transformation()
|
||
}
|
||
|
||
/// Gets a transformed copy of `m`.
|
||
#[inline(always)]
|
||
pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
|
||
Transformation::append_transformation_cpy(m, t)
|
||
}
|
||
|
||
/*
|
||
* Transform<V>
|
||
*/
|
||
|
||
/// Applies a transformation to a vector.
|
||
#[inline(always)]
|
||
pub fn transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||
m.transform(v)
|
||
}
|
||
|
||
/// Applies an inverse transformation to a vector.
|
||
#[inline(always)]
|
||
pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||
m.inv_transform(v)
|
||
}
|
||
|
||
/*
|
||
* Dot<N>
|
||
*/
|
||
|
||
/// Computes the dot product of two vectors.
|
||
#[inline(always)]
|
||
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
|
||
Dot::dot(a, b)
|
||
}
|
||
|
||
/// Computes a subtraction followed by a dot product.
|
||
#[inline(always)]
|
||
pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
|
||
Dot::sub_dot(a, b, c)
|
||
}
|
||
|
||
/*
|
||
* Norm<N>
|
||
*/
|
||
|
||
/// Computes the L2 norm of a vector.
|
||
#[inline(always)]
|
||
pub fn norm<V: Norm<N>, N: Algebraic>(v: &V) -> N {
|
||
Norm::norm(v)
|
||
}
|
||
|
||
/// Computes the squared L2 norm of a vector.
|
||
#[inline(always)]
|
||
pub fn sqnorm<V: Norm<N>, N: Algebraic>(v: &V) -> N {
|
||
Norm::sqnorm(v)
|
||
}
|
||
|
||
/// Gets the normalized version of a vector.
|
||
#[inline(always)]
|
||
pub fn normalize<V: Norm<N>, N: Algebraic>(v: &V) -> V {
|
||
Norm::normalize_cpy(v)
|
||
}
|
||
|
||
/*
|
||
* Cross<V>
|
||
*/
|
||
|
||
/// Computes the cross product of two vectors.
|
||
#[inline(always)]
|
||
pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
|
||
Cross::cross(a, b)
|
||
}
|
||
|
||
/*
|
||
* CrossMatrix<M>
|
||
*/
|
||
|
||
/// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross
|
||
/// product.
|
||
#[inline(always)]
|
||
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
||
CrossMatrix::cross_matrix(v)
|
||
}
|
||
|
||
/*
|
||
* ToHomogeneous<U>
|
||
*/
|
||
|
||
/// Converts a matrix or vector to homogoneous coordinates.
|
||
#[inline(always)]
|
||
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
||
ToHomogeneous::to_homogeneous(m)
|
||
}
|
||
|
||
/*
|
||
* FromHomogeneous<U>
|
||
*/
|
||
|
||
/// Converts a matrix or vector from homogoneous coordinates.
|
||
///
|
||
/// w-normalization is appied.
|
||
#[inline(always)]
|
||
pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
|
||
FromHomogeneous::from(m)
|
||
}
|
||
|
||
/*
|
||
* UniformSphereSample
|
||
*/
|
||
|
||
/// Samples the unit sphere living on the dimension as the samples types.
|
||
///
|
||
/// The number of sampling point is implementation-specific. It is always uniform.
|
||
#[inline(always)]
|
||
pub fn sample_sphere<V: UniformSphereSample>(f: |V| -> ()) {
|
||
UniformSphereSample::sample(f)
|
||
}
|
||
|
||
//
|
||
//
|
||
// Operations
|
||
//
|
||
//
|
||
|
||
|
||
/*
|
||
* Absolute<A>
|
||
*/
|
||
|
||
/// Computes a component-wise absolute value.
|
||
#[inline(always)]
|
||
pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
|
||
Absolute::abs(m)
|
||
}
|
||
|
||
/*
|
||
* Inv
|
||
*/
|
||
|
||
/// Gets an inverted copy of a matrix.
|
||
#[inline(always)]
|
||
pub fn inv<M: Inv>(m: &M) -> Option<M> {
|
||
Inv::inv_cpy(m)
|
||
}
|
||
|
||
/*
|
||
* Transpose
|
||
*/
|
||
|
||
/// Gets a transposed copy of a matrix.
|
||
#[inline(always)]
|
||
pub fn transpose<M: Transpose>(m: &M) -> M {
|
||
Transpose::transpose_cpy(m)
|
||
}
|
||
|
||
/*
|
||
* Outer<M>
|
||
*/
|
||
|
||
/// Computes the outer product of two vectors.
|
||
#[inline(always)]
|
||
pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
|
||
Outer::outer(a, b)
|
||
}
|
||
|
||
/*
|
||
* Cov<M>
|
||
*/
|
||
|
||
/// Computes the covariance of a set of observations.
|
||
#[inline(always)]
|
||
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
|
||
Cov::cov(observations)
|
||
}
|
||
|
||
/*
|
||
* Mean<N>
|
||
*/
|
||
|
||
/// Computes the mean of a set of observations.
|
||
#[inline(always)]
|
||
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
|
||
Mean::mean(observations)
|
||
}
|
||
|
||
//
|
||
//
|
||
// Structure
|
||
//
|
||
//
|
||
|
||
/*
|
||
* Basis
|
||
*/
|
||
|
||
/// Computes the canonical basis for a given dimension.
|
||
#[inline(always)]
|
||
pub fn canonical_basis<V: Basis>(f: |V| -> bool) {
|
||
Basis::canonical_basis(f)
|
||
}
|
||
|
||
/// Computes the basis of the orthonormal subspace of a given vector.
|
||
#[inline(always)]
|
||
pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: |V| -> bool) {
|
||
Basis::orthonormal_subspace_basis(v, f)
|
||
}
|
||
|
||
/*
|
||
* Row<R>
|
||
*/
|
||
|
||
/*
|
||
* Col<C>
|
||
*/
|
||
|
||
/*
|
||
* Dim
|
||
*/
|
||
/// Gets the dimension an object lives in.
|
||
///
|
||
/// Same as `Dim::dim::(None::<V>)`.
|
||
#[inline(always)]
|
||
pub fn dim<V: Dim>() -> uint {
|
||
Dim::dim(None::<V>)
|
||
}
|
||
|
||
/*
|
||
* Cast<T>
|
||
*/
|
||
/// Converts an object from one type to another.
|
||
///
|
||
/// For primitive types, this is the same as the `as` keywords.
|
||
/// The following properties are preserved by a cast:
|
||
///
|
||
/// * Type-level geometric invariants cannot be broken (eg. a cast from Rot3<f64> to Rot3<i64> is
|
||
/// not possible)
|
||
/// * A cast to a type with more type-level invariants cannot be done (eg. a cast from Mat<f64> to
|
||
/// Rot3<f64> is not possible)
|
||
/// * For primitive types an unbounded cast is done using the `as` keyword (this is different from
|
||
/// the standard library which makes bound-checking to ensure eg. that a i64 is not out of the
|
||
/// range of an i32 when a cast from i64 to i32 is done).
|
||
/// * A cast does not affect the dimension of an algebraic object. Note that this prevents an
|
||
/// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose.
|
||
#[inline(always)]
|
||
pub fn cast<T, U: Cast<T>>(t: T) -> U {
|
||
Cast::from(t)
|
||
}
|
||
|
||
/*
|
||
* Indexable
|
||
*/
|