nalgebra/src/base/iter.rs
2021-02-25 13:31:16 +01:00

399 lines
12 KiB
Rust

//! Matrix iterators.
use std::iter::FusedIterator;
use std::marker::PhantomData;
use std::mem;
use crate::base::dimension::{Dim, U1};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{Matrix, MatrixSlice, MatrixSliceMut, Scalar};
macro_rules! iterator {
(struct $Name:ident for $Storage:ident.$ptr: ident -> $Ptr:ty, $Ref:ty, $SRef: ty) => {
/// An iterator through a dense matrix with arbitrary strides matrix.
pub struct $Name<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> {
ptr: $Ptr,
inner_ptr: $Ptr,
inner_end: $Ptr,
size: usize, // We can't use an end pointer here because a stride might be zero.
strides: (S::RStride, S::CStride),
_phantoms: PhantomData<($Ref, R, C, S)>,
}
// TODO: we need to specialize for the case where the matrix storage is owned (in which
// case the iterator is trivial because it does not have any stride).
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> $Name<'a, N, R, C, S> {
/// Creates a new iterator for the given matrix storage.
pub fn new(storage: $SRef) -> $Name<'a, N, R, C, S> {
let shape = storage.shape();
let strides = storage.strides();
let inner_offset = shape.0.value() * strides.0.value();
let size = shape.0.value() * shape.1.value();
let ptr = storage.$ptr();
// If we have a size of 0, 'ptr' must be
// dangling. Howver, 'inner_offset' might
// not be zero if only one dimension is zero, so
// we don't want to call 'offset'.
// This pointer will never actually get used
// if our size is '0', so it's fine to use
// 'ptr' for both the start and end.
let inner_end = if size == 0 {
ptr
} else {
// Safety:
// If 'size' is non-zero, we know that 'ptr'
// is not dangling, and 'inner_offset' must lie
// within the allocation
unsafe { ptr.add(inner_offset) }
};
$Name {
ptr,
inner_ptr: ptr,
inner_end,
size: shape.0.value() * shape.1.value(),
strides,
_phantoms: PhantomData,
}
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> Iterator
for $Name<'a, N, R, C, S>
{
type Item = $Ref;
#[inline]
fn next(&mut self) -> Option<$Ref> {
unsafe {
if self.size == 0 {
None
} else {
self.size -= 1;
// Jump to the next outer dimension if needed.
if self.ptr == self.inner_end {
let stride = self.strides.1.value() as isize;
// This might go past the end of the allocation,
// depending on the value of 'size'. We use
// `wrapping_offset` to avoid UB
self.inner_end = self.ptr.wrapping_offset(stride);
// This will always be in bounds, since
// we're going to dereference it
self.ptr = self.inner_ptr.offset(stride);
self.inner_ptr = self.ptr;
}
// Go to the next element.
let old = self.ptr;
// Don't offset `self.ptr` for the last element,
// as this will be out of bounds. Iteration is done
// at this point (the next call to `next` will return `None`)
// so this is not observable.
if self.size != 0 {
let stride = self.strides.0.value();
self.ptr = self.ptr.add(stride);
}
Some(mem::transmute(old))
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.size, Some(self.size))
}
#[inline]
fn count(self) -> usize {
self.size_hint().0
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> DoubleEndedIterator
for $Name<'a, N, R, C, S>
{
#[inline]
fn next_back(&mut self) -> Option<$Ref> {
unsafe {
if self.size == 0 {
None
} else {
// Pre-decrement `size` such that it now counts to the
// element we want to return.
self.size -= 1;
// Fetch strides
let inner_stride = self.strides.0.value();
let outer_stride = self.strides.1.value();
// Compute number of rows
// Division should be exact
let inner_raw_size = self.inner_end.offset_from(self.inner_ptr) as usize;
let inner_size = inner_raw_size / inner_stride;
// Compute rows and cols remaining
let outer_remaining = self.size / inner_size;
let inner_remaining = self.size % inner_size;
// Compute pointer to last element
let last = self.ptr.offset(
(outer_remaining * outer_stride + inner_remaining * inner_stride)
as isize,
);
// We want either `& *last` or `&mut *last` here, depending
// on the mutability of `$Ref`.
Some(mem::transmute(last))
}
}
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> ExactSizeIterator
for $Name<'a, N, R, C, S>
{
#[inline]
fn len(&self) -> usize {
self.size
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> FusedIterator
for $Name<'a, N, R, C, S>
{
}
};
}
iterator!(struct MatrixIter for Storage.ptr -> *const N, &'a N, &'a S);
iterator!(struct MatrixIterMut for StorageMut.ptr_mut -> *mut N, &'a mut N, &'a mut S);
/*
*
* Row iterators.
*
*/
#[derive(Clone)]
/// An iterator through the rows of a matrix.
pub struct RowIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
mat: &'a Matrix<N, R, C, S>,
curr: usize,
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> RowIter<'a, N, R, C, S> {
pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
RowIter { mat, curr: 0 }
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIter<'a, N, R, C, S> {
type Item = MatrixSlice<'a, N, U1, C, S::RStride, S::CStride>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.curr < self.mat.nrows() {
let res = self.mat.row(self.curr);
self.curr += 1;
Some(res)
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(
self.mat.nrows() - self.curr,
Some(self.mat.nrows() - self.curr),
)
}
#[inline]
fn count(self) -> usize {
self.mat.nrows() - self.curr
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator
for RowIter<'a, N, R, C, S>
{
#[inline]
fn len(&self) -> usize {
self.mat.nrows() - self.curr
}
}
/// An iterator through the mutable rows of a matrix.
pub struct RowIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
mat: *mut Matrix<N, R, C, S>,
curr: usize,
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>,
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterMut<'a, N, R, C, S> {
pub(crate) fn new(mat: &'a mut Matrix<N, R, C, S>) -> Self {
RowIterMut {
mat,
curr: 0,
phantom: PhantomData,
}
}
fn nrows(&self) -> usize {
unsafe { (*self.mat).nrows() }
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
for RowIterMut<'a, N, R, C, S>
{
type Item = MatrixSliceMut<'a, N, U1, C, S::RStride, S::CStride>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.curr < self.nrows() {
let res = unsafe { (*self.mat).row_mut(self.curr) };
self.curr += 1;
Some(res)
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.nrows() - self.curr, Some(self.nrows() - self.curr))
}
#[inline]
fn count(self) -> usize {
self.nrows() - self.curr
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator
for RowIterMut<'a, N, R, C, S>
{
#[inline]
fn len(&self) -> usize {
self.nrows() - self.curr
}
}
/*
*
* Column iterators.
*
*/
#[derive(Clone)]
/// An iterator through the columns of a matrix.
pub struct ColumnIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
mat: &'a Matrix<N, R, C, S>,
curr: usize,
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ColumnIter<'a, N, R, C, S> {
pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
ColumnIter { mat, curr: 0 }
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator
for ColumnIter<'a, N, R, C, S>
{
type Item = MatrixSlice<'a, N, R, U1, S::RStride, S::CStride>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.curr < self.mat.ncols() {
let res = self.mat.column(self.curr);
self.curr += 1;
Some(res)
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(
self.mat.ncols() - self.curr,
Some(self.mat.ncols() - self.curr),
)
}
#[inline]
fn count(self) -> usize {
self.mat.ncols() - self.curr
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator
for ColumnIter<'a, N, R, C, S>
{
#[inline]
fn len(&self) -> usize {
self.mat.ncols() - self.curr
}
}
/// An iterator through the mutable columns of a matrix.
pub struct ColumnIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
mat: *mut Matrix<N, R, C, S>,
curr: usize,
phantom: PhantomData<&'a mut Matrix<N, R, C, S>>,
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIterMut<'a, N, R, C, S> {
pub(crate) fn new(mat: &'a mut Matrix<N, R, C, S>) -> Self {
ColumnIterMut {
mat,
curr: 0,
phantom: PhantomData,
}
}
fn ncols(&self) -> usize {
unsafe { (*self.mat).ncols() }
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
for ColumnIterMut<'a, N, R, C, S>
{
type Item = MatrixSliceMut<'a, N, R, U1, S::RStride, S::CStride>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.curr < self.ncols() {
let res = unsafe { (*self.mat).column_mut(self.curr) };
self.curr += 1;
Some(res)
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.ncols() - self.curr, Some(self.ncols() - self.curr))
}
#[inline]
fn count(self) -> usize {
self.ncols() - self.curr
}
}
impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator
for ColumnIterMut<'a, N, R, C, S>
{
#[inline]
fn len(&self) -> usize {
self.ncols() - self.curr
}
}