forked from M-Labs/nalgebra
155 lines
4.9 KiB
Rust
155 lines
4.9 KiB
Rust
#[cfg(feature = "serde-serialize-no-std")]
|
||
use serde::{Deserialize, Serialize};
|
||
|
||
use crate::allocator::Allocator;
|
||
use crate::base::{DefaultAllocator, OMatrix, OVector};
|
||
use crate::dimension::{Const, DimDiff, DimSub, U1};
|
||
use simba::scalar::ComplexField;
|
||
|
||
use crate::linalg::householder;
|
||
use crate::Matrix;
|
||
use std::mem::MaybeUninit;
|
||
|
||
/// Hessenberg decomposition of a general matrix.
|
||
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize-no-std",
|
||
serde(bound(serialize = "DefaultAllocator: Allocator<T, D, D> +
|
||
Allocator<T, DimDiff<D, U1>>,
|
||
OMatrix<T, D, D>: Serialize,
|
||
OVector<T, DimDiff<D, U1>>: Serialize"))
|
||
)]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize-no-std",
|
||
serde(bound(deserialize = "DefaultAllocator: Allocator<T, D, D> +
|
||
Allocator<T, DimDiff<D, U1>>,
|
||
OMatrix<T, D, D>: Deserialize<'de>,
|
||
OVector<T, DimDiff<D, U1>>: Deserialize<'de>"))
|
||
)]
|
||
#[derive(Clone, Debug)]
|
||
pub struct Hessenberg<T: ComplexField, D: DimSub<U1>>
|
||
where
|
||
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
|
||
{
|
||
hess: OMatrix<T, D, D>,
|
||
subdiag: OVector<T, DimDiff<D, U1>>,
|
||
}
|
||
|
||
impl<T: ComplexField, D: DimSub<U1>> Copy for Hessenberg<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
|
||
OMatrix<T, D, D>: Copy,
|
||
OVector<T, DimDiff<D, U1>>: Copy,
|
||
{
|
||
}
|
||
|
||
impl<T: ComplexField, D: DimSub<U1>> Hessenberg<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D> + Allocator<T, DimDiff<D, U1>>,
|
||
{
|
||
/// Computes the Hessenberg decomposition using householder reflections.
|
||
pub fn new(hess: OMatrix<T, D, D>) -> Self {
|
||
let mut work = Matrix::zeros_generic(hess.shape_generic().0, Const::<1>);
|
||
Self::new_with_workspace(hess, &mut work)
|
||
}
|
||
|
||
/// Computes the Hessenberg decomposition using householder reflections.
|
||
///
|
||
/// The workspace containing `D` elements must be provided but its content does not have to be
|
||
/// initialized.
|
||
pub fn new_with_workspace(mut hess: OMatrix<T, D, D>, work: &mut OVector<T, D>) -> Self {
|
||
assert!(
|
||
hess.is_square(),
|
||
"Cannot compute the hessenberg decomposition of a non-square matrix."
|
||
);
|
||
|
||
let dim = hess.shape_generic().0;
|
||
|
||
assert!(
|
||
dim.value() != 0,
|
||
"Cannot compute the hessenberg decomposition of an empty matrix."
|
||
);
|
||
assert_eq!(
|
||
dim.value(),
|
||
work.len(),
|
||
"Hessenberg: invalid workspace size."
|
||
);
|
||
|
||
if dim.value() == 0 {
|
||
return Hessenberg {
|
||
hess,
|
||
subdiag: Matrix::zeros_generic(dim.sub(Const::<1>), Const::<1>),
|
||
};
|
||
}
|
||
|
||
let mut subdiag = Matrix::uninit(dim.sub(Const::<1>), Const::<1>);
|
||
|
||
for ite in 0..dim.value() - 1 {
|
||
subdiag[ite] = MaybeUninit::new(householder::clear_column_unchecked(
|
||
&mut hess,
|
||
ite,
|
||
1,
|
||
Some(work),
|
||
));
|
||
}
|
||
|
||
// Safety: subdiag is now fully initialized.
|
||
let subdiag = unsafe { subdiag.assume_init() };
|
||
Hessenberg { hess, subdiag }
|
||
}
|
||
|
||
/// Retrieves `(q, h)` with `q` the orthogonal matrix of this decomposition and `h` the
|
||
/// hessenberg matrix.
|
||
#[inline]
|
||
pub fn unpack(self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>) {
|
||
let q = self.q();
|
||
|
||
(q, self.unpack_h())
|
||
}
|
||
|
||
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
|
||
#[inline]
|
||
pub fn unpack_h(mut self) -> OMatrix<T, D, D> {
|
||
let dim = self.hess.nrows();
|
||
self.hess.fill_lower_triangle(T::zero(), 2);
|
||
self.hess
|
||
.slice_mut((1, 0), (dim - 1, dim - 1))
|
||
.set_partial_diagonal(
|
||
self.subdiag
|
||
.iter()
|
||
.map(|e| T::from_real(e.clone().modulus())),
|
||
);
|
||
self.hess
|
||
}
|
||
|
||
// TODO: add a h that moves out of self.
|
||
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
|
||
///
|
||
/// This is less efficient than `.unpack_h()` as it allocates a new matrix.
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn h(&self) -> OMatrix<T, D, D> {
|
||
let dim = self.hess.nrows();
|
||
let mut res = self.hess.clone();
|
||
res.fill_lower_triangle(T::zero(), 2);
|
||
res.slice_mut((1, 0), (dim - 1, dim - 1))
|
||
.set_partial_diagonal(
|
||
self.subdiag
|
||
.iter()
|
||
.map(|e| T::from_real(e.clone().modulus())),
|
||
);
|
||
res
|
||
}
|
||
|
||
/// Computes the orthogonal matrix `Q` of this decomposition.
|
||
#[must_use]
|
||
pub fn q(&self) -> OMatrix<T, D, D> {
|
||
householder::assemble_q(&self.hess, self.subdiag.as_slice())
|
||
}
|
||
|
||
#[doc(hidden)]
|
||
pub fn hess_internal(&self) -> &OMatrix<T, D, D> {
|
||
&self.hess
|
||
}
|
||
}
|