nalgebra/src/linalg/exp.rs

564 lines
16 KiB
Rust

//! This module provides the matrix exponent (exp) function to square matrices.
//!
use crate::{
base::{
allocator::Allocator,
dimension::{Const, Dim, DimMin, DimMinimum},
DefaultAllocator,
},
convert, try_convert, ComplexField, OMatrix, RealField,
};
use crate::num::Zero;
/// Precomputed factorials for integers in range `0..=34`.
/// Note: `35!` does not fit into 128 bits.
// TODO: find a better place for this array?
const FACTORIAL: [u128; 35] = [
1,
1,
2,
6,
24,
120,
720,
5040,
40320,
362880,
3628800,
39916800,
479001600,
6227020800,
87178291200,
1307674368000,
20922789888000,
355687428096000,
6402373705728000,
121645100408832000,
2432902008176640000,
51090942171709440000,
1124000727777607680000,
25852016738884976640000,
620448401733239439360000,
15511210043330985984000000,
403291461126605635584000000,
10888869450418352160768000000,
304888344611713860501504000000,
8841761993739701954543616000000,
265252859812191058636308480000000,
8222838654177922817725562880000000,
263130836933693530167218012160000000,
8683317618811886495518194401280000000,
295232799039604140847618609643520000000,
];
// https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/sparse/linalg/matfuncs.py
struct ExpmPadeHelper<T, D>
where
T: ComplexField,
D: DimMin<D>,
DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), DimMinimum<D, D>>,
{
use_exact_norm: bool,
ident: OMatrix<T, D, D>,
a: OMatrix<T, D, D>,
a2: Option<OMatrix<T, D, D>>,
a4: Option<OMatrix<T, D, D>>,
a6: Option<OMatrix<T, D, D>>,
a8: Option<OMatrix<T, D, D>>,
a10: Option<OMatrix<T, D, D>>,
d4_exact: Option<T::RealField>,
d6_exact: Option<T::RealField>,
d8_exact: Option<T::RealField>,
d10_exact: Option<T::RealField>,
d4_approx: Option<T::RealField>,
d6_approx: Option<T::RealField>,
d8_approx: Option<T::RealField>,
d10_approx: Option<T::RealField>,
}
impl<T, D> ExpmPadeHelper<T, D>
where
T: ComplexField,
D: DimMin<D>,
DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), DimMinimum<D, D>>,
{
fn new(a: OMatrix<T, D, D>, use_exact_norm: bool) -> Self {
let (nrows, ncols) = a.shape_generic();
ExpmPadeHelper {
use_exact_norm,
ident: OMatrix::<T, D, D>::identity_generic(nrows, ncols),
a,
a2: None,
a4: None,
a6: None,
a8: None,
a10: None,
d4_exact: None,
d6_exact: None,
d8_exact: None,
d10_exact: None,
d4_approx: None,
d6_approx: None,
d8_approx: None,
d10_approx: None,
}
}
fn calc_a2(&mut self) {
if self.a2.is_none() {
self.a2 = Some(&self.a * &self.a);
}
}
fn calc_a4(&mut self) {
if self.a4.is_none() {
self.calc_a2();
let a2 = self.a2.as_ref().unwrap();
self.a4 = Some(a2 * a2);
}
}
fn calc_a6(&mut self) {
if self.a6.is_none() {
self.calc_a2();
self.calc_a4();
let a2 = self.a2.as_ref().unwrap();
let a4 = self.a4.as_ref().unwrap();
self.a6 = Some(a4 * a2);
}
}
fn calc_a8(&mut self) {
if self.a8.is_none() {
self.calc_a2();
self.calc_a6();
let a2 = self.a2.as_ref().unwrap();
let a6 = self.a6.as_ref().unwrap();
self.a8 = Some(a6 * a2);
}
}
fn calc_a10(&mut self) {
if self.a10.is_none() {
self.calc_a4();
self.calc_a6();
let a4 = self.a4.as_ref().unwrap();
let a6 = self.a6.as_ref().unwrap();
self.a10 = Some(a6 * a4);
}
}
fn d4_tight(&mut self) -> T::RealField {
if self.d4_exact.is_none() {
self.calc_a4();
self.d4_exact = Some(one_norm(self.a4.as_ref().unwrap()).powf(convert(0.25)));
}
self.d4_exact.clone().unwrap()
}
fn d6_tight(&mut self) -> T::RealField {
if self.d6_exact.is_none() {
self.calc_a6();
self.d6_exact = Some(one_norm(self.a6.as_ref().unwrap()).powf(convert(1.0 / 6.0)));
}
self.d6_exact.clone().unwrap()
}
fn d8_tight(&mut self) -> T::RealField {
if self.d8_exact.is_none() {
self.calc_a8();
self.d8_exact = Some(one_norm(self.a8.as_ref().unwrap()).powf(convert(1.0 / 8.0)));
}
self.d8_exact.clone().unwrap()
}
fn d10_tight(&mut self) -> T::RealField {
if self.d10_exact.is_none() {
self.calc_a10();
self.d10_exact = Some(one_norm(self.a10.as_ref().unwrap()).powf(convert(1.0 / 10.0)));
}
self.d10_exact.clone().unwrap()
}
fn d4_loose(&mut self) -> T::RealField {
if self.use_exact_norm {
return self.d4_tight();
}
if self.d4_exact.is_some() {
return self.d4_exact.clone().unwrap();
}
if self.d4_approx.is_none() {
self.calc_a4();
self.d4_approx = Some(one_norm(self.a4.as_ref().unwrap()).powf(convert(0.25)));
}
self.d4_approx.clone().unwrap()
}
fn d6_loose(&mut self) -> T::RealField {
if self.use_exact_norm {
return self.d6_tight();
}
if self.d6_exact.is_some() {
return self.d6_exact.clone().unwrap();
}
if self.d6_approx.is_none() {
self.calc_a6();
self.d6_approx = Some(one_norm(self.a6.as_ref().unwrap()).powf(convert(1.0 / 6.0)));
}
self.d6_approx.clone().unwrap()
}
fn d8_loose(&mut self) -> T::RealField {
if self.use_exact_norm {
return self.d8_tight();
}
if self.d8_exact.is_some() {
return self.d8_exact.clone().unwrap();
}
if self.d8_approx.is_none() {
self.calc_a8();
self.d8_approx = Some(one_norm(self.a8.as_ref().unwrap()).powf(convert(1.0 / 8.0)));
}
self.d8_approx.clone().unwrap()
}
fn d10_loose(&mut self) -> T::RealField {
if self.use_exact_norm {
return self.d10_tight();
}
if self.d10_exact.is_some() {
return self.d10_exact.clone().unwrap();
}
if self.d10_approx.is_none() {
self.calc_a10();
self.d10_approx = Some(one_norm(self.a10.as_ref().unwrap()).powf(convert(1.0 / 10.0)));
}
self.d10_approx.clone().unwrap()
}
fn pade3(&mut self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>) {
let b: [T; 4] = [convert(120.0), convert(60.0), convert(12.0), convert(1.0)];
self.calc_a2();
let a2 = self.a2.as_ref().unwrap();
let u = &self.a * (a2 * b[3].clone() + &self.ident * b[1].clone());
let v = a2 * b[2].clone() + &self.ident * b[0].clone();
(u, v)
}
fn pade5(&mut self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>) {
let b: [T; 6] = [
convert(30240.0),
convert(15120.0),
convert(3360.0),
convert(420.0),
convert(30.0),
convert(1.0),
];
self.calc_a2();
self.calc_a6();
let u = &self.a
* (self.a4.as_ref().unwrap() * b[5].clone()
+ self.a2.as_ref().unwrap() * b[3].clone()
+ &self.ident * b[1].clone());
let v = self.a4.as_ref().unwrap() * b[4].clone()
+ self.a2.as_ref().unwrap() * b[2].clone()
+ &self.ident * b[0].clone();
(u, v)
}
fn pade7(&mut self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>) {
let b: [T; 8] = [
convert(17_297_280.0),
convert(8_648_640.0),
convert(1_995_840.0),
convert(277_200.0),
convert(25_200.0),
convert(1_512.0),
convert(56.0),
convert(1.0),
];
self.calc_a2();
self.calc_a4();
self.calc_a6();
let u = &self.a
* (self.a6.as_ref().unwrap() * b[7].clone()
+ self.a4.as_ref().unwrap() * b[5].clone()
+ self.a2.as_ref().unwrap() * b[3].clone()
+ &self.ident * b[1].clone());
let v = self.a6.as_ref().unwrap() * b[6].clone()
+ self.a4.as_ref().unwrap() * b[4].clone()
+ self.a2.as_ref().unwrap() * b[2].clone()
+ &self.ident * b[0].clone();
(u, v)
}
fn pade9(&mut self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>) {
let b: [T; 10] = [
convert(17_643_225_600.0),
convert(8_821_612_800.0),
convert(2_075_673_600.0),
convert(302_702_400.0),
convert(30_270_240.0),
convert(2_162_160.0),
convert(110_880.0),
convert(3_960.0),
convert(90.0),
convert(1.0),
];
self.calc_a2();
self.calc_a4();
self.calc_a6();
self.calc_a8();
let u = &self.a
* (self.a8.as_ref().unwrap() * b[9].clone()
+ self.a6.as_ref().unwrap() * b[7].clone()
+ self.a4.as_ref().unwrap() * b[5].clone()
+ self.a2.as_ref().unwrap() * b[3].clone()
+ &self.ident * b[1].clone());
let v = self.a8.as_ref().unwrap() * b[8].clone()
+ self.a6.as_ref().unwrap() * b[6].clone()
+ self.a4.as_ref().unwrap() * b[4].clone()
+ self.a2.as_ref().unwrap() * b[2].clone()
+ &self.ident * b[0].clone();
(u, v)
}
fn pade13_scaled(&mut self, s: u64) -> (OMatrix<T, D, D>, OMatrix<T, D, D>) {
let b: [T; 14] = [
convert(64_764_752_532_480_000.0),
convert(32_382_376_266_240_000.0),
convert(7_771_770_303_897_600.0),
convert(1_187_353_796_428_800.0),
convert(129_060_195_264_000.0),
convert(10_559_470_521_600.0),
convert(670_442_572_800.0),
convert(33_522_128_640.0),
convert(1_323_241_920.0),
convert(40_840_800.0),
convert(960_960.0),
convert(16_380.0),
convert(182.0),
convert(1.0),
];
let s = s as f64;
let mb = &self.a * convert::<f64, T>(2.0_f64.powf(-s));
self.calc_a2();
self.calc_a4();
self.calc_a6();
let mb2 = self.a2.as_ref().unwrap() * convert::<f64, T>(2.0_f64.powf(-2.0 * s));
let mb4 = self.a4.as_ref().unwrap() * convert::<f64, T>(2.0.powf(-4.0 * s));
let mb6 = self.a6.as_ref().unwrap() * convert::<f64, T>(2.0.powf(-6.0 * s));
let u2 = &mb6 * (&mb6 * b[13].clone() + &mb4 * b[11].clone() + &mb2 * b[9].clone());
let u = &mb
* (&u2
+ &mb6 * b[7].clone()
+ &mb4 * b[5].clone()
+ &mb2 * b[3].clone()
+ &self.ident * b[1].clone());
let v2 = &mb6 * (&mb6 * b[12].clone() + &mb4 * b[10].clone() + &mb2 * b[8].clone());
let v = v2
+ &mb6 * b[6].clone()
+ &mb4 * b[4].clone()
+ &mb2 * b[2].clone()
+ &self.ident * b[0].clone();
(u, v)
}
}
/// Compute `n!`
#[inline(always)]
fn factorial(n: usize) -> u128 {
match FACTORIAL.get(n) {
Some(f) => *f,
None => panic!("{}! is greater than u128::MAX", n),
}
}
/// Compute the 1-norm of a non-negative integer power of a non-negative matrix.
fn onenorm_matrix_power_nonm<T, D>(a: &OMatrix<T, D, D>, p: usize) -> T
where
T: RealField,
D: Dim,
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
{
let nrows = a.shape_generic().0;
let mut v = crate::OVector::<T, D>::repeat_generic(nrows, Const::<1>, convert(1.0));
let m = a.transpose();
for _ in 0..p {
v = &m * v;
}
v.max()
}
fn ell<T, D>(a: &OMatrix<T, D, D>, m: usize) -> u64
where
T: ComplexField,
D: Dim,
DefaultAllocator: Allocator<T, D, D>
+ Allocator<T, D>
+ Allocator<T::RealField, D>
+ Allocator<T::RealField, D, D>,
{
let a_abs = a.map(|x| x.abs());
let a_abs_onenorm = onenorm_matrix_power_nonm(&a_abs, 2 * m + 1);
if a_abs_onenorm == <T as ComplexField>::RealField::zero() {
return 0;
}
// 2m choose m = (2m)!/(m! * (2m-m)!) = (2m)!/((m!)^2)
let m_factorial = factorial(m);
let choose_2m_m = factorial(2 * m) / (m_factorial * m_factorial);
let abs_c_recip = choose_2m_m * factorial(2 * m + 1);
let alpha = a_abs_onenorm / one_norm(a);
let alpha: f64 = try_convert(alpha).unwrap() / abs_c_recip as f64;
let u = 2_f64.powf(-53.0);
let log2_alpha_div_u = (alpha / u).log2();
let value = (log2_alpha_div_u / (2.0 * m as f64)).ceil();
if value > 0.0 {
value as u64
} else {
0
}
}
fn solve_p_q<T, D>(u: OMatrix<T, D, D>, v: OMatrix<T, D, D>) -> OMatrix<T, D, D>
where
T: ComplexField,
D: DimMin<D, Output = D>,
DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), DimMinimum<D, D>>,
{
let p = &u + &v;
let q = &v - &u;
q.lu().solve(&p).unwrap()
}
fn one_norm<T, D>(m: &OMatrix<T, D, D>) -> T::RealField
where
T: ComplexField,
D: Dim,
DefaultAllocator: Allocator<T, D, D>,
{
let mut max = <T as ComplexField>::RealField::zero();
for i in 0..m.ncols() {
let col = m.column(i);
max = max.max(
col.iter()
.fold(<T as ComplexField>::RealField::zero(), |a, b| {
a + b.clone().abs()
}),
);
}
max
}
impl<T: ComplexField, D> OMatrix<T, D, D>
where
D: DimMin<D, Output = D>,
DefaultAllocator: Allocator<T, D, D>
+ Allocator<(usize, usize), DimMinimum<D, D>>
+ Allocator<T, D>
+ Allocator<T::RealField, D>
+ Allocator<T::RealField, D, D>,
{
/// Computes exponential of this matrix
#[must_use]
pub fn exp(&self) -> Self {
// Simple case
if self.nrows() == 1 {
return self.map(|v| v.exp());
}
let mut helper = ExpmPadeHelper::new(self.clone(), true);
let eta_1 = T::RealField::max(helper.d4_loose(), helper.d6_loose());
if eta_1 < convert(1.495_585_217_958_292e-2) && ell(&helper.a, 3) == 0 {
let (u, v) = helper.pade3();
return solve_p_q(u, v);
}
let eta_2 = T::RealField::max(helper.d4_tight(), helper.d6_loose());
if eta_2 < convert(2.539_398_330_063_23e-1) && ell(&helper.a, 5) == 0 {
let (u, v) = helper.pade5();
return solve_p_q(u, v);
}
let eta_3 = T::RealField::max(helper.d6_tight(), helper.d8_loose());
if eta_3 < convert(9.504_178_996_162_932e-1) && ell(&helper.a, 7) == 0 {
let (u, v) = helper.pade7();
return solve_p_q(u, v);
}
if eta_3 < convert(2.097_847_961_257_068e0) && ell(&helper.a, 9) == 0 {
let (u, v) = helper.pade9();
return solve_p_q(u, v);
}
let eta_4 = T::RealField::max(helper.d8_loose(), helper.d10_loose());
let eta_5 = T::RealField::min(eta_3, eta_4);
let theta_13 = convert(4.25);
let mut s = if eta_5 == T::RealField::zero() {
0
} else {
let l2 = try_convert((eta_5 / theta_13).log2().ceil()).unwrap();
if l2 < 0.0 {
0
} else {
l2 as u64
}
};
s += ell(
&(&helper.a * convert::<f64, T>(2.0_f64.powf(-(s as f64)))),
13,
);
let (u, v) = helper.pade13_scaled(s);
let mut x = solve_p_q(u, v);
for _ in 0..s {
x = &x * &x;
}
x
}
}
#[cfg(test)]
mod tests {
#[test]
#[allow(clippy::float_cmp)]
fn one_norm() {
use crate::Matrix3;
let m = Matrix3::new(-3.0, 5.0, 7.0, 2.0, 6.0, 4.0, 0.0, 2.0, 8.0);
assert_eq!(super::one_norm(&m), 19.0);
}
}