forked from M-Labs/nalgebra
144 lines
4.7 KiB
Rust
144 lines
4.7 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
||
use serde::{Deserialize, Serialize};
|
||
|
||
use alga::general::Complex;
|
||
use crate::allocator::Allocator;
|
||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
|
||
use crate::dimension::{DimDiff, DimSub, U1};
|
||
use crate::storage::Storage;
|
||
|
||
use crate::linalg::householder;
|
||
|
||
/// Hessenberg decomposition of a general matrix.
|
||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize",
|
||
serde(bound(
|
||
serialize = "DefaultAllocator: Allocator<N, D, D> +
|
||
Allocator<N, DimDiff<D, U1>>,
|
||
MatrixN<N, D>: Serialize,
|
||
VectorN<N, DimDiff<D, U1>>: Serialize"
|
||
))
|
||
)]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize",
|
||
serde(bound(
|
||
deserialize = "DefaultAllocator: Allocator<N, D, D> +
|
||
Allocator<N, DimDiff<D, U1>>,
|
||
MatrixN<N, D>: Deserialize<'de>,
|
||
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"
|
||
))
|
||
)]
|
||
#[derive(Clone, Debug)]
|
||
pub struct Hessenberg<N: Complex, D: DimSub<U1>>
|
||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||
{
|
||
hess: MatrixN<N, D>,
|
||
subdiag: VectorN<N, DimDiff<D, U1>>,
|
||
}
|
||
|
||
impl<N: Complex, D: DimSub<U1>> Copy for Hessenberg<N, D>
|
||
where
|
||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||
MatrixN<N, D>: Copy,
|
||
VectorN<N, DimDiff<D, U1>>: Copy,
|
||
{}
|
||
|
||
impl<N: Complex, D: DimSub<U1>> Hessenberg<N, D>
|
||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>
|
||
{
|
||
/// Computes the Hessenberg decomposition using householder reflections.
|
||
pub fn new(hess: MatrixN<N, D>) -> Self {
|
||
let mut work = unsafe { MatrixMN::new_uninitialized_generic(hess.data.shape().0, U1) };
|
||
Self::new_with_workspace(hess, &mut work)
|
||
}
|
||
|
||
/// Computes the Hessenberg decomposition using householder reflections.
|
||
///
|
||
/// The workspace containing `D` elements must be provided but its content does not have to be
|
||
/// initialized.
|
||
pub fn new_with_workspace(mut hess: MatrixN<N, D>, work: &mut VectorN<N, D>) -> Self {
|
||
assert!(
|
||
hess.is_square(),
|
||
"Cannot compute the hessenberg decomposition of a non-square matrix."
|
||
);
|
||
|
||
let dim = hess.data.shape().0;
|
||
|
||
assert!(
|
||
dim.value() != 0,
|
||
"Cannot compute the hessenberg decomposition of an empty matrix."
|
||
);
|
||
assert_eq!(
|
||
dim.value(),
|
||
work.len(),
|
||
"Hessenberg: invalid workspace size."
|
||
);
|
||
|
||
let mut subdiag = unsafe { MatrixMN::new_uninitialized_generic(dim.sub(U1), U1) };
|
||
|
||
if dim.value() == 0 {
|
||
return Hessenberg { hess, subdiag };
|
||
}
|
||
|
||
for ite in 0..dim.value() - 1 {
|
||
householder::clear_column_unchecked(&mut hess, &mut subdiag[ite], ite, 1, Some(work));
|
||
}
|
||
|
||
Hessenberg { hess, subdiag }
|
||
}
|
||
|
||
/// Retrieves `(q, h)` with `q` the orthogonal matrix of this decomposition and `h` the
|
||
/// hessenberg matrix.
|
||
#[inline]
|
||
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>) {
|
||
let q = self.q();
|
||
|
||
(q, self.unpack_h())
|
||
}
|
||
|
||
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
|
||
#[inline]
|
||
pub fn unpack_h(mut self) -> MatrixN<N, D> {
|
||
let dim = self.hess.nrows();
|
||
self.hess.fill_lower_triangle(N::zero(), 2);
|
||
self.hess
|
||
.slice_mut((1, 0), (dim - 1, dim - 1))
|
||
.set_partial_diagonal(self.subdiag.iter().map(|e| N::from_real(e.modulus())));
|
||
self.hess
|
||
}
|
||
|
||
// FIXME: add a h that moves out of self.
|
||
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
|
||
///
|
||
/// This is less efficient than `.unpack_h()` as it allocates a new matrix.
|
||
#[inline]
|
||
pub fn h(&self) -> MatrixN<N, D> {
|
||
let dim = self.hess.nrows();
|
||
let mut res = self.hess.clone();
|
||
res.fill_lower_triangle(N::zero(), 2);
|
||
res.slice_mut((1, 0), (dim - 1, dim - 1))
|
||
.set_partial_diagonal(self.subdiag.iter().map(|e| N::from_real(e.modulus())));
|
||
res
|
||
}
|
||
|
||
/// Computes the orthogonal matrix `Q` of this decomposition.
|
||
pub fn q(&self) -> MatrixN<N, D> {
|
||
householder::assemble_q(&self.hess, self.subdiag.as_slice())
|
||
}
|
||
|
||
#[doc(hidden)]
|
||
pub fn hess_internal(&self) -> &MatrixN<N, D> {
|
||
&self.hess
|
||
}
|
||
}
|
||
|
||
impl<N: Complex, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>
|
||
{
|
||
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
|
||
pub fn hessenberg(self) -> Hessenberg<N, D> {
|
||
Hessenberg::new(self.into_owned())
|
||
}
|
||
}
|