forked from M-Labs/nalgebra
311 lines
10 KiB
Rust
311 lines
10 KiB
Rust
use std::any::Any;
|
|
use std::fmt::Debug;
|
|
use std::marker::PhantomData;
|
|
use approx::ApproxEq;
|
|
|
|
use alga::general::Field;
|
|
|
|
use core::{Scalar, SquareMatrix, OwnedSquareMatrix};
|
|
use core::dimension::{DimName, DimNameAdd, DimNameSum, U1};
|
|
use core::storage::{Storage, StorageMut};
|
|
use core::allocator::Allocator;
|
|
|
|
/// Trait implemented by phantom types identifying the projective transformation type.
|
|
///
|
|
/// NOTE: this trait is not intended to be implementable outside of the `nalgebra` crate.
|
|
pub trait TCategory: Any + Debug + Copy + PartialEq + Send {
|
|
/// Indicates whether a `Transform` with the category `Self` has a bottom-row different from
|
|
/// `0 0 .. 1`.
|
|
#[inline]
|
|
fn has_normalizer() -> bool {
|
|
true
|
|
}
|
|
|
|
/// Checks that the given matrix is a valid homogeneous representation of an element of the
|
|
/// category `Self`.
|
|
fn check_homogeneous_invariants<N, D, S>(mat: &SquareMatrix<N, D, S>) -> bool
|
|
where N: Scalar + Field + ApproxEq,
|
|
D: DimName,
|
|
S: Storage<N, D, D>,
|
|
N::Epsilon: Copy;
|
|
}
|
|
|
|
/// Traits that gives the `Transform` category that is compatible with the result of the
|
|
/// multiplication of transformations with categories `Self` and `Other`.
|
|
pub trait TCategoryMul<Other: TCategory>: TCategory {
|
|
/// The transform category that results from the multiplication of a `Transform<Self>` to a
|
|
/// `Transform<Other>`. This is usually equal to `Self` or `Other`, whichever is the most
|
|
/// general category.
|
|
type Representative: TCategory;
|
|
}
|
|
|
|
/// Indicates that `Self` is a more general `Transform` category than `Other`.
|
|
pub trait SuperTCategoryOf<Other: TCategory>: TCategory { }
|
|
|
|
/// Indicates that `Self` is a more specific `Transform` category than `Other`.
|
|
///
|
|
/// Automatically implemented based on `SuperTCategoryOf`.
|
|
pub trait SubTCategoryOf<Other: TCategory>: TCategory { }
|
|
impl<T1, T2> SubTCategoryOf<T2> for T1
|
|
where T1: TCategory,
|
|
T2: SuperTCategoryOf<T1> {
|
|
}
|
|
|
|
/// Tag representing the most general (not necessarily inversible) `Transform` type.
|
|
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
pub enum TGeneral { }
|
|
|
|
/// Tag representing the most general inversible `Transform` type.
|
|
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
pub enum TProjective { }
|
|
|
|
/// Tag representing an affine `Transform`. Its bottom-row is equal to `(0, 0 ... 0, 1)`.
|
|
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
pub enum TAffine { }
|
|
|
|
impl TCategory for TGeneral {
|
|
#[inline]
|
|
fn check_homogeneous_invariants<N, D, S>(_: &SquareMatrix<N, D, S>) -> bool
|
|
where N: Scalar + Field + ApproxEq,
|
|
D: DimName,
|
|
S: Storage<N, D, D>,
|
|
N::Epsilon: Copy {
|
|
true
|
|
}
|
|
}
|
|
|
|
impl TCategory for TProjective {
|
|
#[inline]
|
|
fn check_homogeneous_invariants<N, D, S>(mat: &SquareMatrix<N, D, S>) -> bool
|
|
where N: Scalar + Field + ApproxEq,
|
|
D: DimName,
|
|
S: Storage<N, D, D>,
|
|
N::Epsilon: Copy {
|
|
mat.is_invertible()
|
|
}
|
|
}
|
|
|
|
impl TCategory for TAffine {
|
|
#[inline]
|
|
fn has_normalizer() -> bool {
|
|
false
|
|
}
|
|
|
|
#[inline]
|
|
fn check_homogeneous_invariants<N, D, S>(mat: &SquareMatrix<N, D, S>) -> bool
|
|
where N: Scalar + Field + ApproxEq,
|
|
D: DimName,
|
|
S: Storage<N, D, D>,
|
|
N::Epsilon: Copy {
|
|
mat.is_invertible() &&
|
|
mat[(D::dim(), D::dim())] == N::one() &&
|
|
(0 .. D::dim()).all(|i| mat[(D::dim(), i)].is_zero())
|
|
}
|
|
}
|
|
|
|
macro_rules! category_mul_impl(
|
|
($($a: ident * $b: ident => $c: ty);* $(;)*) => {$(
|
|
impl TCategoryMul<$a> for $b {
|
|
type Representative = $c;
|
|
}
|
|
)*}
|
|
);
|
|
|
|
// We require stability uppon multiplication.
|
|
impl<T: TCategory> TCategoryMul<T> for T {
|
|
type Representative = T;
|
|
}
|
|
|
|
category_mul_impl!(
|
|
// TGeneral * TGeneral => TGeneral;
|
|
TGeneral * TProjective => TGeneral;
|
|
TGeneral * TAffine => TGeneral;
|
|
|
|
TProjective * TGeneral => TGeneral;
|
|
// TProjective * TProjective => TProjective;
|
|
TProjective * TAffine => TProjective;
|
|
|
|
TAffine * TGeneral => TGeneral;
|
|
TAffine * TProjective => TProjective;
|
|
// TAffine * TAffine => TAffine;
|
|
);
|
|
|
|
macro_rules! super_tcategory_impl(
|
|
($($a: ident >= $b: ident);* $(;)*) => {$(
|
|
impl SuperTCategoryOf<$b> for $a { }
|
|
)*}
|
|
);
|
|
|
|
impl<T: TCategory> SuperTCategoryOf<T> for T { }
|
|
|
|
super_tcategory_impl!(
|
|
TGeneral >= TProjective;
|
|
TGeneral >= TAffine;
|
|
TProjective >= TAffine;
|
|
);
|
|
|
|
|
|
/// A transformation matrix that owns its data.
|
|
pub type OwnedTransform<N, D, A, C>
|
|
= TransformBase<N, D, <A as Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>>::Buffer, C>;
|
|
|
|
|
|
/// A transformation matrix in homogeneous coordinates.
|
|
///
|
|
/// It is stored as a matrix with dimensions `(D + 1, D + 1)`, e.g., it stores a 4x4 matrix for a
|
|
/// 3D transformation.
|
|
#[repr(C)]
|
|
#[derive(Debug, Clone, Copy)] // FIXME: Hash
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
pub struct TransformBase<N: Scalar, D: DimNameAdd<U1>, S, C: TCategory> {
|
|
matrix: SquareMatrix<N, DimNameSum<D, U1>, S>,
|
|
|
|
#[cfg_attr(feature = "serde-serialize", serde(skip_serializing, skip_deserializing))]
|
|
_phantom: PhantomData<C>
|
|
}
|
|
|
|
// XXX: for some reasons, implementing Clone and Copy manually causes an ICE…
|
|
|
|
impl<N, D, S, C: TCategory> Eq for TransformBase<N, D, S, C>
|
|
where N: Scalar + Eq,
|
|
D: DimNameAdd<U1>,
|
|
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
|
|
|
|
impl<N, D, S, C: TCategory> PartialEq for TransformBase<N, D, S, C>
|
|
where N: Scalar,
|
|
D: DimNameAdd<U1>,
|
|
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
|
|
#[inline]
|
|
fn eq(&self, right: &Self) -> bool {
|
|
self.matrix == right.matrix
|
|
}
|
|
}
|
|
|
|
impl<N, D, S, C: TCategory> TransformBase<N, D, S, C>
|
|
where N: Scalar,
|
|
D: DimNameAdd<U1>,
|
|
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
|
|
/// Creates a new transformation from the given homogeneous matrix. The transformation category
|
|
/// of `Self` is not checked to be verified by the given matrix.
|
|
#[inline]
|
|
pub fn from_matrix_unchecked(matrix: SquareMatrix<N, DimNameSum<D, U1>, S>) -> Self {
|
|
TransformBase {
|
|
matrix: matrix,
|
|
_phantom: PhantomData
|
|
}
|
|
}
|
|
|
|
/// Moves this transform into one that owns its data.
|
|
#[inline]
|
|
pub fn into_owned(self) -> OwnedTransform<N, D, S::Alloc, C> {
|
|
TransformBase::from_matrix_unchecked(self.matrix.into_owned())
|
|
}
|
|
|
|
/// Clones this transform into one that owns its data.
|
|
#[inline]
|
|
pub fn clone_owned(&self) -> OwnedTransform<N, D, S::Alloc, C> {
|
|
TransformBase::from_matrix_unchecked(self.matrix.clone_owned())
|
|
}
|
|
|
|
/// The underlying matrix.
|
|
#[inline]
|
|
pub fn unwrap(self) -> SquareMatrix<N, DimNameSum<D, U1>, S> {
|
|
self.matrix
|
|
}
|
|
|
|
/// A reference to the underlynig matrix.
|
|
#[inline]
|
|
pub fn matrix(&self) -> &SquareMatrix<N, DimNameSum<D, U1>, S> {
|
|
&self.matrix
|
|
}
|
|
|
|
/// A mutable reference to the underlying matrix.
|
|
///
|
|
/// It is `_unchecked` because direct modifications of this matrix may break invariants
|
|
/// identified by this transformation category.
|
|
#[inline]
|
|
pub fn matrix_mut_unchecked(&mut self) -> &mut SquareMatrix<N, DimNameSum<D, U1>, S> {
|
|
&mut self.matrix
|
|
}
|
|
|
|
/// Sets the category of this transform.
|
|
///
|
|
/// This can be done only if the new category is more general than the current one, e.g., a
|
|
/// transform with category `TProjective` cannot be converted to a transform with category
|
|
/// `TAffine` because not all projective transformations are affine (the other way-round is
|
|
/// valid though).
|
|
#[inline]
|
|
pub fn set_category<CNew: SuperTCategoryOf<C>>(self) -> TransformBase<N, D, S, CNew> {
|
|
TransformBase::from_matrix_unchecked(self.matrix)
|
|
}
|
|
|
|
/// Converts this transform into its equivalent homogeneous transformation matrix.
|
|
#[inline]
|
|
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc> {
|
|
self.matrix().clone_owned()
|
|
}
|
|
}
|
|
|
|
impl<N, D, S, C> TransformBase<N, D, S, C>
|
|
where N: Scalar + Field + ApproxEq,
|
|
D: DimNameAdd<U1>,
|
|
C: TCategory,
|
|
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
|
|
/// Attempts to invert this transformation. You may use `.inverse` instead of this
|
|
/// transformation has a subcategory of `TProjective`.
|
|
#[inline]
|
|
pub fn try_inverse(self) -> Option<OwnedTransform<N, D, S::Alloc, C>> {
|
|
if let Some(m) = self.matrix.try_inverse() {
|
|
Some(TransformBase::from_matrix_unchecked(m))
|
|
}
|
|
else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Inverts this transformation. Use `.try_inverse` if this transform has the `TGeneral`
|
|
/// category (it may not be invertible).
|
|
#[inline]
|
|
pub fn inverse(self) -> OwnedTransform<N, D, S::Alloc, C>
|
|
where C: SubTCategoryOf<TProjective> {
|
|
// FIXME: specialize for TAffine?
|
|
TransformBase::from_matrix_unchecked(self.matrix.try_inverse().unwrap())
|
|
}
|
|
}
|
|
|
|
impl<N, D, S, C> TransformBase<N, D, S, C>
|
|
where N: Scalar + Field + ApproxEq,
|
|
D: DimNameAdd<U1>,
|
|
C: TCategory,
|
|
S: StorageMut<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
|
|
/// Attempts to invert this transformation in-place. You may use `.inverse_mut` instead of this
|
|
/// transformation has a subcategory of `TProjective`.
|
|
#[inline]
|
|
pub fn try_inverse_mut(&mut self) -> bool {
|
|
self.matrix.try_inverse_mut()
|
|
}
|
|
|
|
/// Inverts this transformation in-place. Use `.try_inverse_mut` if this transform has the
|
|
/// `TGeneral` category (it may not be invertible).
|
|
#[inline]
|
|
pub fn inverse_mut(&mut self)
|
|
where C: SubTCategoryOf<TProjective> {
|
|
let _ = self.matrix.try_inverse_mut();
|
|
}
|
|
}
|
|
|
|
impl<N, D, S> TransformBase<N, D, S, TGeneral>
|
|
where N: Scalar,
|
|
D: DimNameAdd<U1>,
|
|
S: Storage<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
|
|
/// A mutable reference to underlying matrix. Use `.matrix_mut_unchecked` instead if this
|
|
/// transformation category is not `TGeneral`.
|
|
#[inline]
|
|
pub fn matrix_mut(&mut self) -> &mut SquareMatrix<N, DimNameSum<D, U1>, S> {
|
|
self.matrix_mut_unchecked()
|
|
}
|
|
}
|