forked from M-Labs/nalgebra
487 lines
27 KiB
Rust
487 lines
27 KiB
Rust
use crate::utils::is_sorted_descending;
|
|
use na::{DMatrix, Matrix6};
|
|
|
|
#[cfg(feature = "proptest-support")]
|
|
mod proptest_tests {
|
|
macro_rules! gen_tests(
|
|
($module: ident, $scalar: expr, $scalar_type: ty) => {
|
|
mod $module {
|
|
use na::{
|
|
DMatrix, DVector, Matrix2, Matrix3, Matrix4,
|
|
ComplexField
|
|
};
|
|
use std::cmp;
|
|
#[allow(unused_imports)]
|
|
use crate::core::helper::{RandScalar, RandComplex};
|
|
use crate::proptest::*;
|
|
use proptest::{prop_assert, proptest};
|
|
use crate::utils::is_sorted_descending;
|
|
|
|
proptest! {
|
|
#[test]
|
|
fn svd(m in dmatrix_($scalar)) {
|
|
let svd = m.clone().svd(true, true);
|
|
let recomp_m = svd.clone().recompose().unwrap();
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = DMatrix::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
|
|
|
prop_assert!(s.iter().all(|e| *e >= 0.0));
|
|
prop_assert!(relative_eq!(&u * ds * &v_t, recomp_m, epsilon = 1.0e-5));
|
|
prop_assert!(relative_eq!(m, recomp_m, epsilon = 1.0e-5));
|
|
prop_assert!(is_sorted_descending(s.as_slice()));
|
|
}
|
|
|
|
#[test]
|
|
fn svd_static_5_3(m in matrix5x3_($scalar)) {
|
|
let svd = m.svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = Matrix3::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
|
|
|
prop_assert!(s.iter().all(|e| *e >= 0.0));
|
|
prop_assert!(relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5));
|
|
prop_assert!(u.is_orthogonal(1.0e-5));
|
|
prop_assert!(v_t.is_orthogonal(1.0e-5));
|
|
prop_assert!(is_sorted_descending(s.as_slice()));
|
|
}
|
|
|
|
#[test]
|
|
fn svd_static_5_2(m in matrix5x2_($scalar)) {
|
|
let svd = m.svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
|
|
|
prop_assert!(s.iter().all(|e| *e >= 0.0));
|
|
prop_assert!(relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5));
|
|
prop_assert!(u.is_orthogonal(1.0e-5));
|
|
prop_assert!(v_t.is_orthogonal(1.0e-5));
|
|
prop_assert!(is_sorted_descending(s.as_slice()));
|
|
}
|
|
|
|
#[test]
|
|
fn svd_static_3_5(m in matrix3x5_($scalar)) {
|
|
let svd = m.svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
|
|
let ds = Matrix3::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
|
|
|
prop_assert!(s.iter().all(|e| *e >= 0.0));
|
|
prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5));
|
|
prop_assert!(is_sorted_descending(s.as_slice()));
|
|
}
|
|
|
|
#[test]
|
|
fn svd_static_2_5(m in matrix2x5_($scalar)) {
|
|
let svd = m.svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
|
|
|
prop_assert!(s.iter().all(|e| *e >= 0.0));
|
|
prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5));
|
|
prop_assert!(is_sorted_descending(s.as_slice()));
|
|
}
|
|
|
|
#[test]
|
|
fn svd_static_square(m in matrix4_($scalar)) {
|
|
let svd = m.svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = Matrix4::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
|
|
|
prop_assert!(s.iter().all(|e| *e >= 0.0));
|
|
prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5));
|
|
prop_assert!(u.is_orthogonal(1.0e-5));
|
|
prop_assert!(v_t.is_orthogonal(1.0e-5));
|
|
prop_assert!(is_sorted_descending(s.as_slice()));
|
|
}
|
|
|
|
#[test]
|
|
fn svd_static_square_2x2(m in matrix2_($scalar)) {
|
|
let svd = m.svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
|
|
|
prop_assert!(s.iter().all(|e| *e >= 0.0));
|
|
prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5));
|
|
prop_assert!(u.is_orthogonal(1.0e-5));
|
|
prop_assert!(v_t.is_orthogonal(1.0e-5));
|
|
prop_assert!(is_sorted_descending(s.as_slice()));
|
|
}
|
|
|
|
#[test]
|
|
fn svd_static_square_3x3(m in matrix3_($scalar)) {
|
|
let svd = m.svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = Matrix3::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
|
|
|
prop_assert!(s.iter().all(|e| *e >= 0.0));
|
|
prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5));
|
|
prop_assert!(u.is_orthogonal(1.0e-5));
|
|
prop_assert!(v_t.is_orthogonal(1.0e-5));
|
|
prop_assert!(is_sorted_descending(s.as_slice()));
|
|
}
|
|
|
|
#[test]
|
|
fn svd_pseudo_inverse(m in dmatrix_($scalar)) {
|
|
let svd = m.clone().svd(true, true);
|
|
let pinv = svd.pseudo_inverse(1.0e-10).unwrap();
|
|
|
|
if m.nrows() > m.ncols() {
|
|
prop_assert!((pinv * m).is_identity(1.0e-5))
|
|
} else {
|
|
prop_assert!((m * pinv).is_identity(1.0e-5))
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn svd_solve(n in PROPTEST_MATRIX_DIM, nb in PROPTEST_MATRIX_DIM) {
|
|
let n = cmp::max(1, cmp::min(n, 10));
|
|
let nb = cmp::min(nb, 10);
|
|
let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0);
|
|
|
|
let svd = m.clone().svd(true, true);
|
|
|
|
if svd.rank(1.0e-7) == n {
|
|
let b1 = DVector::<$scalar_type>::new_random(n).map(|e| e.0);
|
|
let b2 = DMatrix::<$scalar_type>::new_random(n, nb).map(|e| e.0);
|
|
|
|
let sol1 = svd.solve(&b1, 1.0e-7).unwrap();
|
|
let sol2 = svd.solve(&b2, 1.0e-7).unwrap();
|
|
|
|
let recomp = svd.recompose().unwrap();
|
|
|
|
prop_assert!(relative_eq!(m, recomp, epsilon = 1.0e-6));
|
|
prop_assert!(relative_eq!(&m * &sol1, b1, epsilon = 1.0e-6));
|
|
prop_assert!(relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn svd_polar_decomposition(m in dmatrix_($scalar)) {
|
|
let svd = m.clone().svd_unordered(true, true);
|
|
let (p, u) = svd.to_polar().unwrap();
|
|
|
|
assert_relative_eq!(m, &p* &u, epsilon = 1.0e-5);
|
|
// semi-unitary check
|
|
assert!(u.is_orthogonal(1.0e-5) || u.transpose().is_orthogonal(1.0e-5));
|
|
// hermitian check
|
|
assert_relative_eq!(p, p.adjoint(), epsilon = 1.0e-5);
|
|
|
|
/*
|
|
* Same thing, but using the method instead of calling the SVD explicitly.
|
|
*/
|
|
let (p2, u2) = m.clone().polar();
|
|
assert_eq!(p, p2);
|
|
assert_eq!(u, u2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
);
|
|
|
|
gen_tests!(complex, complex_f64(), RandComplex<f64>);
|
|
gen_tests!(f64, PROPTEST_F64, RandScalar<f64>);
|
|
}
|
|
|
|
// Test proposed on the issue #176 of rulinalg.
|
|
#[test]
|
|
#[rustfmt::skip]
|
|
fn svd_singular() {
|
|
let m = DMatrix::from_row_slice(24, 24, &[
|
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
-1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 1.0, 1.0,
|
|
0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0]);
|
|
|
|
let svd = m.clone().svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = DMatrix::from_diagonal(&s);
|
|
|
|
assert!(s.iter().all(|e| *e >= 0.0));
|
|
assert!(is_sorted_descending(s.as_slice()));
|
|
assert!(u.is_orthogonal(1.0e-5));
|
|
assert!(v_t.is_orthogonal(1.0e-5));
|
|
assert_relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5);
|
|
}
|
|
|
|
// Same as the previous test but with one additional row.
|
|
#[test]
|
|
#[rustfmt::skip]
|
|
fn svd_singular_vertical() {
|
|
let m = DMatrix::from_row_slice(25, 24, &[
|
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
-1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 1.0, 1.0,
|
|
0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0]);
|
|
|
|
|
|
let svd = m.clone().svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = DMatrix::from_diagonal(&s);
|
|
|
|
assert!(s.iter().all(|e| *e >= 0.0));
|
|
assert!(is_sorted_descending(s.as_slice()));
|
|
assert_relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5);
|
|
}
|
|
|
|
// Same as the previous test but with one additional column.
|
|
#[test]
|
|
#[rustfmt::skip]
|
|
fn svd_singular_horizontal() {
|
|
let m = DMatrix::from_row_slice(24, 25, &[
|
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
-1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 1.0, 1.0, 1.0,
|
|
0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]);
|
|
|
|
let svd = m.clone().svd(true, true);
|
|
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
|
let ds = DMatrix::from_diagonal(&s);
|
|
|
|
assert!(s.iter().all(|e| *e >= 0.0));
|
|
assert!(is_sorted_descending(s.as_slice()));
|
|
assert_relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5);
|
|
}
|
|
|
|
#[test]
|
|
fn svd_zeros() {
|
|
let m = DMatrix::from_element(10, 10, 0.0);
|
|
let svd = m.clone().svd(true, true);
|
|
assert_eq!(Ok(m), svd.recompose());
|
|
}
|
|
|
|
#[test]
|
|
fn svd_identity() {
|
|
let m = DMatrix::<f64>::identity(10, 10);
|
|
let svd = m.clone().svd(true, true);
|
|
assert_eq!(Ok(m), svd.recompose());
|
|
|
|
let m = DMatrix::<f64>::identity(10, 15);
|
|
let svd = m.clone().svd(true, true);
|
|
assert_eq!(Ok(m), svd.recompose());
|
|
|
|
let m = DMatrix::<f64>::identity(15, 10);
|
|
let svd = m.clone().svd(true, true);
|
|
assert_eq!(Ok(m), svd.recompose());
|
|
}
|
|
|
|
#[test]
|
|
#[rustfmt::skip]
|
|
fn svd_with_delimited_subproblem() {
|
|
let mut m = DMatrix::<f64>::from_element(10, 10, 0.0);
|
|
m[(0, 0)] = 1.0; m[(0, 1)] = 2.0;
|
|
m[(1, 1)] = 0.0; m[(1, 2)] = 3.0;
|
|
m[(2, 2)] = 4.0; m[(2, 3)] = 5.0;
|
|
m[(3, 3)] = 6.0; m[(3, 4)] = 0.0;
|
|
m[(4, 4)] = 8.0; m[(3, 5)] = 9.0;
|
|
m[(5, 5)] = 10.0; m[(3, 6)] = 11.0;
|
|
m[(6, 6)] = 12.0; m[(3, 7)] = 12.0;
|
|
m[(7, 7)] = 14.0; m[(3, 8)] = 13.0;
|
|
m[(8, 8)] = 16.0; m[(3, 9)] = 17.0;
|
|
m[(9, 9)] = 18.0;
|
|
let svd = m.clone().svd(true, true);
|
|
assert_relative_eq!(m, svd.recompose().unwrap(), epsilon = 1.0e-7);
|
|
|
|
// Rectangular versions.
|
|
let mut m = DMatrix::<f64>::from_element(15, 10, 0.0);
|
|
m[(0, 0)] = 1.0; m[(0, 1)] = 2.0;
|
|
m[(1, 1)] = 0.0; m[(1, 2)] = 3.0;
|
|
m[(2, 2)] = 4.0; m[(2, 3)] = 5.0;
|
|
m[(3, 3)] = 6.0; m[(3, 4)] = 0.0;
|
|
m[(4, 4)] = 8.0; m[(3, 5)] = 9.0;
|
|
m[(5, 5)] = 10.0; m[(3, 6)] = 11.0;
|
|
m[(6, 6)] = 12.0; m[(3, 7)] = 12.0;
|
|
m[(7, 7)] = 14.0; m[(3, 8)] = 13.0;
|
|
m[(8, 8)] = 16.0; m[(3, 9)] = 17.0;
|
|
m[(9, 9)] = 18.0;
|
|
let svd = m.clone().svd(true, true);
|
|
assert_relative_eq!(m, svd.recompose().unwrap(), epsilon = 1.0e-7);
|
|
|
|
let svd = m.transpose().svd(true, true);
|
|
assert_relative_eq!(m.transpose(), svd.recompose().unwrap(), epsilon = 1.0e-7);
|
|
}
|
|
|
|
#[test]
|
|
#[rustfmt::skip]
|
|
fn svd_fail() {
|
|
let m = Matrix6::new(
|
|
0.9299319121545955, 0.9955870335651049, 0.8824725266413644, 0.28966880207132295, 0.06102723649846409, 0.9311880746048009,
|
|
0.5938395242304351, 0.8398522876024204, 0.06672831951963198, 0.9941213119963099, 0.9431846038057834, 0.8159885168706427,
|
|
0.9121962883152357, 0.6471119669367571, 0.4823309702814407, 0.6420516076705516, 0.7731203925207113, 0.7424069470756647,
|
|
0.07311092531259344, 0.5579247949052946, 0.14518764691585773, 0.03502980663114896, 0.7991329455957719, 0.4929930019965745,
|
|
0.12293810556077789, 0.6617084679545999, 0.9002240700227326, 0.027153062135304884, 0.3630189466989524, 0.18207502727558866,
|
|
0.843196731466686, 0.08951878746549924, 0.7533450877576973, 0.009558876499740077, 0.9429679490873482, 0.9355764454129878);
|
|
|
|
// Check unordered ...
|
|
let svd = m.clone().svd_unordered(true, true);
|
|
let recomp = svd.recompose().unwrap();
|
|
assert_relative_eq!(m, recomp, epsilon = 1.0e-5);
|
|
|
|
// ... and ordered SVD.
|
|
let svd = m.clone().svd(true, true);
|
|
let recomp = svd.recompose().unwrap();
|
|
assert_relative_eq!(m, recomp, epsilon = 1.0e-5);
|
|
}
|
|
|
|
#[test]
|
|
#[rustfmt::skip]
|
|
fn svd3_fail() {
|
|
// NOTE: this matrix fails the special case done for 3x3 SVDs.
|
|
// It was found on an actual application using SVD as part of the minimization of a
|
|
// quadratic error function.
|
|
let m = nalgebra::matrix![
|
|
0.0, 1.0, 0.0;
|
|
0.0, 1.7320508075688772, 0.0;
|
|
0.0, 0.0, 0.0
|
|
];
|
|
|
|
// Check unordered ...
|
|
let svd = m.svd_unordered(true, true);
|
|
let recomp = svd.recompose().unwrap();
|
|
assert_relative_eq!(m, recomp, epsilon = 1.0e-5);
|
|
|
|
// ... and ordered SVD.
|
|
let svd = m.svd(true, true);
|
|
let recomp = svd.recompose().unwrap();
|
|
assert_relative_eq!(m, recomp, epsilon = 1.0e-5);
|
|
}
|
|
|
|
#[test]
|
|
fn svd_err() {
|
|
let m = DMatrix::from_element(10, 10, 0.0);
|
|
let svd = m.clone().svd(false, false);
|
|
assert_eq!(
|
|
Err("SVD recomposition: U and V^t have not been computed."),
|
|
svd.clone().recompose()
|
|
);
|
|
assert_eq!(
|
|
Err("SVD pseudo inverse: the epsilon must be non-negative."),
|
|
svd.clone().pseudo_inverse(-1.0)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
#[rustfmt::skip]
|
|
fn svd_sorted() {
|
|
let reference = nalgebra::matrix![
|
|
1.0, 2.0, 3.0, 4.0;
|
|
5.0, 6.0, 7.0, 8.0;
|
|
9.0, 10.0, 11.0, 12.0
|
|
];
|
|
|
|
let mut svd = nalgebra::SVD {
|
|
singular_values: nalgebra::matrix![1.72261225; 2.54368356e+01; 5.14037515e-16],
|
|
u: Some(nalgebra::matrix![
|
|
-0.88915331, -0.20673589, 0.40824829;
|
|
-0.25438183, -0.51828874, -0.81649658;
|
|
0.38038964, -0.82984158, 0.40824829
|
|
]),
|
|
v_t: Some(nalgebra::matrix![
|
|
0.73286619, 0.28984978, -0.15316664, -0.59618305;
|
|
-0.40361757, -0.46474413, -0.52587069, -0.58699725;
|
|
0.44527162, -0.83143156, 0.32704826, 0.05911168
|
|
]),
|
|
};
|
|
|
|
assert_relative_eq!(
|
|
svd.recompose().expect("valid SVD"),
|
|
reference,
|
|
epsilon = 1.0e-5
|
|
);
|
|
|
|
svd.sort_by_singular_values();
|
|
|
|
// Ensure successful sorting
|
|
assert_relative_eq!(svd.singular_values.x, 2.54368356e+01, epsilon = 1.0e-5);
|
|
|
|
// Ensure that the sorted components represent the same decomposition
|
|
assert_relative_eq!(
|
|
svd.recompose().expect("valid SVD"),
|
|
reference,
|
|
epsilon = 1.0e-5
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
// Exercises bug reported in issue #983 of nalgebra (https://github.com/dimforge/nalgebra/issues/983)
|
|
fn svd_regression_issue_983() {
|
|
let m = nalgebra::dmatrix![
|
|
10.74785316637712f64, -5.994983325167452, -6.064492921857296;
|
|
-4.149751381521569, 20.654504205822462, -4.470436210703133;
|
|
-22.772715014220207, -1.4554372570788008, 18.108113992170573
|
|
]
|
|
.transpose();
|
|
let svd1 = m.clone().svd(true, true);
|
|
let svd2 = m.clone().svd(false, true);
|
|
let svd3 = m.clone().svd(true, false);
|
|
let svd4 = m.svd(false, false);
|
|
|
|
assert_relative_eq!(svd1.singular_values, svd2.singular_values, epsilon = 1e-9);
|
|
assert_relative_eq!(svd1.singular_values, svd3.singular_values, epsilon = 1e-9);
|
|
assert_relative_eq!(svd1.singular_values, svd4.singular_values, epsilon = 1e-9);
|
|
assert_relative_eq!(
|
|
svd1.singular_values,
|
|
nalgebra::dvector![3.16188022e+01, 2.23811978e+01, 0.],
|
|
epsilon = 1e-6
|
|
);
|
|
}
|