nalgebra/src/geometry/rotation_ops.rs
2018-10-27 15:00:18 +02:00

174 lines
5.8 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
*
* This provides the following operator overladings:
*
* Index<(usize, usize)>
*
* Rotation × Rotation
* Rotation ÷ Rotation
* Rotation × Matrix
* Matrix × Rotation
* Matrix ÷ Rotation
* Rotation × Point
* Rotation × Unit<Vector>
*
*
* Rotation ×= Rotation
* Matrix ×= Rotation
*/
use num::{One, Zero};
use std::ops::{Div, DivAssign, Index, Mul, MulAssign};
use alga::general::{ClosedAdd, ClosedMul};
use base::allocator::Allocator;
use base::constraint::{AreMultipliable, ShapeConstraint};
use base::dimension::{Dim, DimName, U1};
use base::storage::Storage;
use base::{DefaultAllocator, Matrix, MatrixMN, Scalar, Unit, Vector, VectorN};
use geometry::{Point, Rotation};
impl<N: Scalar, D: DimName> Index<(usize, usize)> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
type Output = N;
#[inline]
fn index(&self, row_col: (usize, usize)) -> &N {
self.matrix().index(row_col)
}
}
// Rotation × Rotation
md_impl_all!(
Mul, mul;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>, Output = Rotation<N, D>;
[val val] => Rotation::from_matrix_unchecked(self.unwrap() * right.unwrap());
[ref val] => Rotation::from_matrix_unchecked(self.matrix() * right.unwrap());
[val ref] => Rotation::from_matrix_unchecked(self.unwrap() * right.matrix());
[ref ref] => Rotation::from_matrix_unchecked(self.matrix() * right.matrix());
);
// Rotation ÷ Rotation
// FIXME: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
md_impl_all!(
Div, div;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>, Output = Rotation<N, D>;
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
);
// Rotation × Matrix
md_impl_all!(
Mul, mul;
(D1, D1), (R2, C2) for D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>
where DefaultAllocator: Allocator<N, D1, C2>
where ShapeConstraint: AreMultipliable<D1, D1, R2, C2>;
self: Rotation<N, D1>, right: Matrix<N, R2, C2, SB>, Output = MatrixMN<N, D1, C2>;
[val val] => self.unwrap() * right;
[ref val] => self.matrix() * right;
[val ref] => self.unwrap() * right;
[ref ref] => self.matrix() * right;
);
// Matrix × Rotation
md_impl_all!(
Mul, mul;
(R1, C1), (D2, D2) for R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>
where DefaultAllocator: Allocator<N, R1, D2>
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
self: Matrix<N, R1, C1, SA>, right: Rotation<N, D2>, Output = MatrixMN<N, R1, D2>;
[val val] => self * right.unwrap();
[ref val] => self * right.unwrap();
[val ref] => self * right.matrix();
[ref ref] => self * right.matrix();
);
// Matrix ÷ Rotation
md_impl_all!(
Div, div;
(R1, C1), (D2, D2) for R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>
where DefaultAllocator: Allocator<N, R1, D2>
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
self: Matrix<N, R1, C1, SA>, right: Rotation<N, D2>, Output = MatrixMN<N, R1, D2>;
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
);
// Rotation × Point
// FIXME: we don't handle properly non-zero origins here. Do we want this to be the intended
// behavior?
md_impl_all!(
Mul, mul;
(D, D), (D, U1) for D: DimName
where DefaultAllocator: Allocator<N, D>
where ShapeConstraint: AreMultipliable<D, D, D, U1>;
self: Rotation<N, D>, right: Point<N, D>, Output = Point<N, D>;
[val val] => self.unwrap() * right;
[ref val] => self.matrix() * right;
[val ref] => self.unwrap() * right;
[ref ref] => self.matrix() * right;
);
// Rotation × Unit<Vector>
md_impl_all!(
Mul, mul;
(D, D), (D, U1) for D: DimName, S: Storage<N, D>
where DefaultAllocator: Allocator<N, D>
where ShapeConstraint: AreMultipliable<D, D, D, U1>;
self: Rotation<N, D>, right: Unit<Vector<N, D, S>>, Output = Unit<VectorN<N, D>>;
[val val] => Unit::new_unchecked(self.unwrap() * right.unwrap());
[ref val] => Unit::new_unchecked(self.matrix() * right.unwrap());
[val ref] => Unit::new_unchecked(self.unwrap() * right.as_ref());
[ref ref] => Unit::new_unchecked(self.matrix() * right.as_ref());
);
// Rotation ×= Rotation
// FIXME: try not to call `inverse()` explicitly.
md_assign_impl_all!(
MulAssign, mul_assign;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>;
[val] => unsafe { self.matrix_mut().mul_assign(right.unwrap()) };
[ref] => unsafe { self.matrix_mut().mul_assign(right.matrix()) };
);
md_assign_impl_all!(
DivAssign, div_assign;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>;
[val] => unsafe { self.matrix_mut().mul_assign(right.inverse().unwrap()) };
[ref] => unsafe { self.matrix_mut().mul_assign(right.inverse().matrix()) };
);
// Matrix *= Rotation
// FIXME: try not to call `inverse()` explicitly.
// FIXME: this shares the same limitations as for the current impl. of MulAssign for matrices.
// (In particular the number of matrix column must be equal to the number of rotation columns,
// i.e., equal to the rotation dimension.
md_assign_impl_all!(
MulAssign, mul_assign;
(R1, C1), (C1, C1) for R1: DimName, C1: DimName;
self: MatrixMN<N, R1, C1>, right: Rotation<N, C1>;
[val] => self.mul_assign(right.unwrap());
[ref] => self.mul_assign(right.matrix());
);
md_assign_impl_all!(
DivAssign, div_assign;
(R1, C1), (C1, C1) for R1: DimName, C1: DimName;
self: MatrixMN<N, R1, C1>, right: Rotation<N, C1>;
[val] => self.mul_assign(right.inverse().unwrap());
[ref] => self.mul_assign(right.inverse().matrix());
);