nalgebra/src/linalg/decomposition.rs
2021-04-11 13:57:54 +02:00

259 lines
11 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use crate::storage::Storage;
use crate::{
Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, RealField, Schur, SymmetricEigen,
SymmetricTridiagonal, LU, QR, SVD, U1, UDU,
};
/// # Rectangular matrix decomposition
///
/// This section contains the methods for computing some common decompositions of rectangular
/// matrices with real or complex components. The following are currently supported:
///
/// | Decomposition | Factors | Details |
/// | -------------------------|---------------------|--------------|
/// | QR | `Q * R` | `Q` is an unitary matrix, and `R` is upper-triangular. |
/// | QR with column pivoting | `Q * R * P⁻¹` | `Q` is an unitary matrix, and `R` is upper-triangular. `P` is a permutation matrix. |
/// | LU with partial pivoting | `P⁻¹ * L * U` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. |
/// | LU with full pivoting | `P⁻¹ * L * U * Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. |
/// | SVD | `U * Σ * Vᵀ` | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. |
impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/// Computes the bidiagonalization using householder reflections.
pub fn bidiagonalize(self) -> Bidiagonal<T, R, C>
where
R: DimMin<C>,
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,
{
Bidiagonal::new(self.into_owned())
}
/// Computes the LU decomposition with full pivoting of `matrix`.
///
/// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
pub fn full_piv_lu(self) -> FullPivLU<T, R, C>
where
R: DimMin<C>,
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
{
FullPivLU::new(self.into_owned())
}
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
pub fn lu(self) -> LU<T, R, C>
where
R: DimMin<C>,
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
{
LU::new(self.into_owned())
}
/// Computes the QR decomposition of this matrix.
pub fn qr(self) -> QR<T, R, C>
where
R: DimMin<C>,
DefaultAllocator: Allocator<T, R, C> + Allocator<T, R> + Allocator<T, DimMinimum<R, C>>,
{
QR::new(self.into_owned())
}
/// Computes the QR decomposition (with column pivoting) of this matrix.
pub fn col_piv_qr(self) -> ColPivQR<T, R, C>
where
R: DimMin<C>,
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, R>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<(usize, usize), DimMinimum<R, C>>,
{
ColPivQR::new(self.into_owned())
}
/// Computes the Singular Value Decomposition using implicit shift.
pub fn svd(self, compute_u: bool, compute_v: bool) -> SVD<T, R, C>
where
R: DimMin<C>,
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
{
SVD::new(self.into_owned(), compute_u, compute_v)
}
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
///
/// # Arguments
///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of right-singular vectors.
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_svd(
self,
compute_u: bool,
compute_v: bool,
eps: T::RealField,
max_niter: usize,
) -> Option<SVD<T, R, C>>
where
R: DimMin<C>,
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
{
SVD::try_new(self.into_owned(), compute_u, compute_v, eps, max_niter)
}
}
/// # Square matrix decomposition
///
/// This section contains the methods for computing some common decompositions of square
/// matrices with real or complex components. The following are currently supported:
///
/// | Decomposition | Factors | Details |
/// | -------------------------|---------------------------|--------------|
/// | Hessenberg | `Q * H * Qᵀ` | `Q` is a unitary matrix and `H` an upper-Hessenberg matrix. |
/// | Cholesky | `L * Lᵀ` | `L` is a lower-triangular matrix. |
/// | UDU | `U * D * Uᵀ` | `U` is a upper-triangular matrix, and `D` a diagonal matrix. |
/// | Schur decomposition | `Q * T * Qᵀ` | `Q` is an unitary matrix and `T` a quasi-upper-triangular matrix. |
/// | Symmetric eigendecomposition | `Q ~ Λ ~ Qᵀ` | `Q` is an unitary matrix, and `Λ` is a real diagonal matrix. |
/// | Symmetric tridiagonalization | `Q ~ T ~ Qᵀ` | `Q` is an unitary matrix, and `T` is a tridiagonal matrix. |
impl<T: ComplexField, D: Dim, S: Storage<T, D, D>> Matrix<T, D, D, S> {
/// Attempts to compute the Cholesky decomposition of this matrix.
///
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
/// to be symmetric and only the lower-triangular part is read.
pub fn cholesky(self) -> Option<Cholesky<T, D>>
where
DefaultAllocator: Allocator<T, D, D>,
{
Cholesky::new(self.into_owned())
}
/// Attempts to compute the UDU decomposition of this matrix.
///
/// The input matrix `self` is assumed to be symmetric and this decomposition will only read
/// the upper-triangular part of `self`.
pub fn udu(self) -> Option<UDU<T, D>>
where
T: RealField,
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
{
UDU::new(self.into_owned())
}
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
pub fn hessenberg(self) -> Hessenberg<T, D>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D> + Allocator<T, DimDiff<D, U1>>,
{
Hessenberg::new(self.into_owned())
}
/// Computes the Schur decomposition of a square matrix.
pub fn schur(self) -> Schur<T, D>
where
D: DimSub<U1>, // For Hessenberg.
DefaultAllocator: Allocator<T, D, DimDiff<D, U1>>
+ Allocator<T, DimDiff<D, U1>>
+ Allocator<T, D, D>
+ Allocator<T, D>,
{
Schur::new(self.into_owned())
}
/// Attempts to compute the Schur decomposition of a square matrix.
///
/// If only eigenvalues are needed, it is more efficient to call the matrix method
/// `.eigenvalues()` instead.
///
/// # Arguments
///
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_schur(self, eps: T::RealField, max_niter: usize) -> Option<Schur<T, D>>
where
D: DimSub<U1>, // For Hessenberg.
DefaultAllocator: Allocator<T, D, DimDiff<D, U1>>
+ Allocator<T, DimDiff<D, U1>>
+ Allocator<T, D, D>
+ Allocator<T, D>,
{
Schur::try_new(self.into_owned(), eps, max_niter)
}
/// Computes the eigendecomposition of this symmetric matrix.
///
/// Only the lower-triangular part (including the diagonal) of `m` is read.
pub fn symmetric_eigen(self) -> SymmetricEigen<T, D>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, D, D>
+ Allocator<T, DimDiff<D, U1>>
+ Allocator<T::RealField, D>
+ Allocator<T::RealField, DimDiff<D, U1>>,
{
SymmetricEigen::new(self.into_owned())
}
/// Computes the eigendecomposition of the given symmetric matrix with user-specified
/// convergence parameters.
///
/// Only the lower-triangular part (including the diagonal) of `m` is read.
///
/// # Arguments
///
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_symmetric_eigen(
self,
eps: T::RealField,
max_niter: usize,
) -> Option<SymmetricEigen<T, D>>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, D, D>
+ Allocator<T, DimDiff<D, U1>>
+ Allocator<T::RealField, D>
+ Allocator<T::RealField, DimDiff<D, U1>>,
{
SymmetricEigen::try_new(self.into_owned(), eps, max_niter)
}
/// Computes the tridiagonalization of this symmetric matrix.
///
/// Only the lower-triangular part (including the diagonal) of `m` is read.
pub fn symmetric_tridiagonalize(self) -> SymmetricTridiagonal<T, D>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
{
SymmetricTridiagonal::new(self.into_owned())
}
}