nalgebra/src/base/min_max.rs
2021-08-02 18:41:46 +02:00

406 lines
11 KiB
Rust

use crate::storage::RawStorage;
use crate::{ComplexField, Dim, Matrix, Scalar, SimdComplexField, SimdPartialOrd, Vector};
use num::{Signed, Zero};
use simba::simd::SimdSigned;
/// # Find the min and max components
impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
/// Returns the absolute value of the component with the largest absolute value.
/// # Example
/// ```
/// # use nalgebra::Vector3;
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).amax(), 3.0);
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).amax(), 3.0);
/// ```
#[inline]
#[must_use]
pub fn amax(&self) -> T
where
T: Zero + SimdSigned + SimdPartialOrd,
{
self.fold_with(
|e| e.unwrap_or(&T::zero()).simd_abs(),
|a, b| a.simd_max(b.simd_abs()),
)
}
/// Returns the the 1-norm of the complex component with the largest 1-norm.
/// # Example
/// ```
/// # use nalgebra::{Vector3, Complex};
/// assert_eq!(Vector3::new(
/// Complex::new(-3.0, -2.0),
/// Complex::new(1.0, 2.0),
/// Complex::new(1.0, 3.0)).camax(), 5.0);
/// ```
#[inline]
#[must_use]
pub fn camax(&self) -> T::SimdRealField
where
T: SimdComplexField,
{
self.fold_with(
|e| e.unwrap_or(&T::zero()).simd_norm1(),
|a, b| a.simd_max(b.simd_norm1()),
)
}
/// Returns the component with the largest value.
/// # Example
/// ```
/// # use nalgebra::Vector3;
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).max(), 3.0);
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).max(), -1.0);
/// assert_eq!(Vector3::new(5u32, 2, 3).max(), 5);
/// ```
#[inline]
#[must_use]
pub fn max(&self) -> T
where
T: SimdPartialOrd + Zero,
{
self.fold_with(
|e| e.map(|e| e.inlined_clone()).unwrap_or_else(T::zero),
|a, b| a.simd_max(b.inlined_clone()),
)
}
/// Returns the absolute value of the component with the smallest absolute value.
/// # Example
/// ```
/// # use nalgebra::Vector3;
/// assert_eq!(Vector3::new(-1.0, 2.0, -3.0).amin(), 1.0);
/// assert_eq!(Vector3::new(10.0, 2.0, 30.0).amin(), 2.0);
/// ```
#[inline]
#[must_use]
pub fn amin(&self) -> T
where
T: Zero + SimdPartialOrd + SimdSigned,
{
self.fold_with(
|e| e.map(|e| e.simd_abs()).unwrap_or_else(T::zero),
|a, b| a.simd_min(b.simd_abs()),
)
}
/// Returns the the 1-norm of the complex component with the smallest 1-norm.
/// # Example
/// ```
/// # use nalgebra::{Vector3, Complex};
/// assert_eq!(Vector3::new(
/// Complex::new(-3.0, -2.0),
/// Complex::new(1.0, 2.0),
/// Complex::new(1.0, 3.0)).camin(), 3.0);
/// ```
#[inline]
#[must_use]
pub fn camin(&self) -> T::SimdRealField
where
T: SimdComplexField,
{
self.fold_with(
|e| {
e.map(|e| e.simd_norm1())
.unwrap_or_else(T::SimdRealField::zero)
},
|a, b| a.simd_min(b.simd_norm1()),
)
}
/// Returns the component with the smallest value.
/// # Example
/// ```
/// # use nalgebra::Vector3;
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).min(), -1.0);
/// assert_eq!(Vector3::new(1.0, 2.0, 3.0).min(), 1.0);
/// assert_eq!(Vector3::new(5u32, 2, 3).min(), 2);
/// ```
#[inline]
#[must_use]
pub fn min(&self) -> T
where
T: SimdPartialOrd + Zero,
{
self.fold_with(
|e| e.map(|e| e.inlined_clone()).unwrap_or_else(T::zero),
|a, b| a.simd_min(b.inlined_clone()),
)
}
/// Computes the index of the matrix component with the largest absolute value.
///
/// # Examples:
///
/// ```
/// # extern crate num_complex;
/// # extern crate nalgebra;
/// # use num_complex::Complex;
/// # use nalgebra::Matrix2x3;
/// let mat = Matrix2x3::new(Complex::new(11.0, 1.0), Complex::new(-12.0, 2.0), Complex::new(13.0, 3.0),
/// Complex::new(21.0, 43.0), Complex::new(22.0, 5.0), Complex::new(-23.0, 0.0));
/// assert_eq!(mat.icamax_full(), (1, 0));
/// ```
#[inline]
#[must_use]
pub fn icamax_full(&self) -> (usize, usize)
where
T: ComplexField,
{
assert!(!self.is_empty(), "The input matrix must not be empty.");
let mut the_max = unsafe { self.get_unchecked((0, 0)).norm1() };
let mut the_ij = (0, 0);
for j in 0..self.ncols() {
for i in 0..self.nrows() {
let val = unsafe { self.get_unchecked((i, j)).norm1() };
if val > the_max {
the_max = val;
the_ij = (i, j);
}
}
}
the_ij
}
}
impl<T: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
/// Computes the index of the matrix component with the largest absolute value.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix2x3;
/// let mat = Matrix2x3::new(11, -12, 13,
/// 21, 22, -23);
/// assert_eq!(mat.iamax_full(), (1, 2));
/// ```
#[inline]
#[must_use]
pub fn iamax_full(&self) -> (usize, usize) {
assert!(!self.is_empty(), "The input matrix must not be empty.");
let mut the_max = unsafe { self.get_unchecked((0, 0)).abs() };
let mut the_ij = (0, 0);
for j in 0..self.ncols() {
for i in 0..self.nrows() {
let val = unsafe { self.get_unchecked((i, j)).abs() };
if val > the_max {
the_max = val;
the_ij = (i, j);
}
}
}
the_ij
}
}
// TODO: find a way to avoid code duplication just for complex number support.
/// # Find the min and max components (vector-specific methods)
impl<T: Scalar, D: Dim, S: RawStorage<T, D>> Vector<T, D, S> {
/// Computes the index of the vector component with the largest complex or real absolute value.
///
/// # Examples:
///
/// ```
/// # extern crate num_complex;
/// # extern crate nalgebra;
/// # use num_complex::Complex;
/// # use nalgebra::Vector3;
/// let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
/// assert_eq!(vec.icamax(), 2);
/// ```
#[inline]
#[must_use]
pub fn icamax(&self) -> usize
where
T: ComplexField,
{
assert!(!self.is_empty(), "The input vector must not be empty.");
let mut the_max = unsafe { self.vget_unchecked(0).norm1() };
let mut the_i = 0;
for i in 1..self.nrows() {
let val = unsafe { self.vget_unchecked(i).norm1() };
if val > the_max {
the_max = val;
the_i = i;
}
}
the_i
}
/// Computes the index and value of the vector component with the largest value.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Vector3;
/// let vec = Vector3::new(11, -15, 13);
/// assert_eq!(vec.argmax(), (2, 13));
/// ```
#[inline]
#[must_use]
pub fn argmax(&self) -> (usize, T)
where
T: PartialOrd,
{
assert!(!self.is_empty(), "The input vector must not be empty.");
let mut the_max = unsafe { self.vget_unchecked(0) };
let mut the_i = 0;
for i in 1..self.nrows() {
let val = unsafe { self.vget_unchecked(i) };
if val > the_max {
the_max = val;
the_i = i;
}
}
(the_i, the_max.inlined_clone())
}
/// Computes the index of the vector component with the largest value.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Vector3;
/// let vec = Vector3::new(11, -15, 13);
/// assert_eq!(vec.imax(), 2);
/// ```
#[inline]
#[must_use]
pub fn imax(&self) -> usize
where
T: PartialOrd,
{
self.argmax().0
}
/// Computes the index of the vector component with the largest absolute value.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Vector3;
/// let vec = Vector3::new(11, -15, 13);
/// assert_eq!(vec.iamax(), 1);
/// ```
#[inline]
#[must_use]
pub fn iamax(&self) -> usize
where
T: PartialOrd + Signed,
{
assert!(!self.is_empty(), "The input vector must not be empty.");
let mut the_max = unsafe { self.vget_unchecked(0).abs() };
let mut the_i = 0;
for i in 1..self.nrows() {
let val = unsafe { self.vget_unchecked(i).abs() };
if val > the_max {
the_max = val;
the_i = i;
}
}
the_i
}
/// Computes the index and value of the vector component with the smallest value.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Vector3;
/// let vec = Vector3::new(11, -15, 13);
/// assert_eq!(vec.argmin(), (1, -15));
/// ```
#[inline]
#[must_use]
pub fn argmin(&self) -> (usize, T)
where
T: PartialOrd,
{
assert!(!self.is_empty(), "The input vector must not be empty.");
let mut the_min = unsafe { self.vget_unchecked(0) };
let mut the_i = 0;
for i in 1..self.nrows() {
let val = unsafe { self.vget_unchecked(i) };
if val < the_min {
the_min = val;
the_i = i;
}
}
(the_i, the_min.inlined_clone())
}
/// Computes the index of the vector component with the smallest value.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Vector3;
/// let vec = Vector3::new(11, -15, 13);
/// assert_eq!(vec.imin(), 1);
/// ```
#[inline]
#[must_use]
pub fn imin(&self) -> usize
where
T: PartialOrd,
{
self.argmin().0
}
/// Computes the index of the vector component with the smallest absolute value.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Vector3;
/// let vec = Vector3::new(11, -15, 13);
/// assert_eq!(vec.iamin(), 0);
/// ```
#[inline]
#[must_use]
pub fn iamin(&self) -> usize
where
T: PartialOrd + Signed,
{
assert!(!self.is_empty(), "The input vector must not be empty.");
let mut the_min = unsafe { self.vget_unchecked(0).abs() };
let mut the_i = 0;
for i in 1..self.nrows() {
let val = unsafe { self.vget_unchecked(i).abs() };
if val < the_min {
the_min = val;
the_i = i;
}
}
the_i
}
}