nalgebra/src/geometry/unit_complex_conversion.rs
Sébastien Crozet c97dfaf381
Add renormalization and rotation extraction from general 2D and 3D matrices. (#549)
* Add From impls to convert between UnitQuaterion/UnitComplex and Rotation2/3

* Add rotation extraction from a Matrix2 or Matrix3.

* Add fast Taylor renormalization for Unit.

Fix 376.

* Add renormalization for Rotation3.

Renormalization for Rotation2 requires Complex to implement VectorSpace which will be fixed only on alga v0.9

* Update Changelog.
2019-02-18 22:41:46 +01:00

185 lines
4.6 KiB
Rust

use num::Zero;
use num_complex::Complex;
use alga::general::{Real, SubsetOf, SupersetOf};
use alga::linear::Rotation as AlgaRotation;
use base::dimension::U2;
use base::{Matrix2, Matrix3};
use geometry::{
Isometry, Point2, Rotation2, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
UnitComplex
};
/*
* This file provides the following conversions:
* =============================================
*
* UnitComplex -> UnitComplex
* UnitComplex -> Rotation<U1>
* UnitComplex -> Isometry<U2>
* UnitComplex -> Similarity<U2>
* UnitComplex -> Transform<U2>
* UnitComplex -> Matrix<U3> (homogeneous)
*
* NOTE:
* UnitComplex -> Complex is already provided by: Unit<T> -> T
*/
impl<N1, N2> SubsetOf<UnitComplex<N2>> for UnitComplex<N1>
where
N1: Real,
N2: Real + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> UnitComplex<N2> {
UnitComplex::new_unchecked(self.as_ref().to_superset())
}
#[inline]
fn is_in_subset(uq: &UnitComplex<N2>) -> bool {
::is_convertible::<_, Complex<N1>>(uq.as_ref())
}
#[inline]
unsafe fn from_superset_unchecked(uq: &UnitComplex<N2>) -> Self {
Self::new_unchecked(::convert_ref_unchecked(uq.as_ref()))
}
}
impl<N1, N2> SubsetOf<Rotation2<N2>> for UnitComplex<N1>
where
N1: Real,
N2: Real + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> Rotation2<N2> {
let q: UnitComplex<N2> = self.to_superset();
q.to_rotation_matrix().to_superset()
}
#[inline]
fn is_in_subset(rot: &Rotation2<N2>) -> bool {
::is_convertible::<_, Rotation2<N1>>(rot)
}
#[inline]
unsafe fn from_superset_unchecked(rot: &Rotation2<N2>) -> Self {
let q = UnitComplex::<N2>::from_rotation_matrix(rot);
::convert_unchecked(q)
}
}
impl<N1, N2, R> SubsetOf<Isometry<N2, U2, R>> for UnitComplex<N1>
where
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, U2, R> {
Isometry::from_parts(Translation::identity(), ::convert_ref(self))
}
#[inline]
fn is_in_subset(iso: &Isometry<N2, U2, R>) -> bool {
iso.translation.vector.is_zero()
}
#[inline]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, U2, R>) -> Self {
::convert_ref_unchecked(&iso.rotation)
}
}
impl<N1, N2, R> SubsetOf<Similarity<N2, U2, R>> for UnitComplex<N1>
where
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, U2, R> {
Similarity::from_isometry(::convert_ref(self), N2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity<N2, U2, R>) -> bool {
sim.isometry.translation.vector.is_zero() && sim.scaling() == N2::one()
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, U2, R>) -> Self {
::convert_ref_unchecked(&sim.isometry)
}
}
impl<N1, N2, C> SubsetOf<Transform<N2, U2, C>> for UnitComplex<N1>
where
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
{
#[inline]
fn to_superset(&self) -> Transform<N2, U2, C> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<N2, U2, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, U2, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1: Real, N2: Real + SupersetOf<N1>> SubsetOf<Matrix3<N2>> for UnitComplex<N1> {
#[inline]
fn to_superset(&self) -> Matrix3<N2> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &Matrix3<N2>) -> bool {
::is_convertible::<_, Rotation2<N1>>(m)
}
#[inline]
unsafe fn from_superset_unchecked(m: &Matrix3<N2>) -> Self {
let rot: Rotation2<N1> = ::convert_ref_unchecked(m);
Self::from_rotation_matrix(&rot)
}
}
impl<N: Real> From<UnitComplex<N>> for Rotation2<N> {
#[inline]
fn from(q: UnitComplex<N>) -> Self {
q.to_rotation_matrix()
}
}
impl<N: Real> From<Rotation2<N>> for UnitComplex<N> {
#[inline]
fn from(q: Rotation2<N>) -> Self {
Self::from_rotation_matrix(&q)
}
}
impl<N: Real> From<UnitComplex<N>> for Matrix3<N> {
#[inline]
fn from(q: UnitComplex<N>) -> Matrix3<N> {
q.to_homogeneous()
}
}
impl<N: Real> From<UnitComplex<N>> for Matrix2<N> {
#[inline]
fn from(q: UnitComplex<N>) -> Self {
q.to_rotation_matrix().into_inner()
}
}