forked from M-Labs/nalgebra
433 lines
14 KiB
Rust
433 lines
14 KiB
Rust
use std::mem;
|
|
use num::FromPrimitive;
|
|
use na::{self, Real, DefaultAllocator};
|
|
|
|
use aliases::{TVec, TMat};
|
|
use traits::{Number, Dimension, Alloc};
|
|
|
|
/// For each matrix or vector component `x` if `x >= 0`; otherwise, it returns `-x`.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra_glm as glm;
|
|
/// let vec = glm::vec3(-1.0, 0.0, 2.0);
|
|
/// assert_eq!(glm::vec3(1.0, 0.0, 2.0), glm::abs(&vec));
|
|
///
|
|
/// let mat = glm::mat2(-0.0, 1.0, -3.0, 2.0);
|
|
/// assert_eq!(glm::mat2(0.0, 1.0, 3.0, 2.0), glm::abs(&mat));
|
|
/// ```
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`sign`](fn.sign.html)
|
|
pub fn abs<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, R, C>
|
|
where DefaultAllocator: Alloc<N, R, C> {
|
|
x.abs()
|
|
}
|
|
|
|
/// For each matrix or vector component returns a value equal to the nearest integer that is greater than or equal to `x`.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra_glm as glm;
|
|
/// let vec = glm::vec3(-1.5, 0.5, 2.8);
|
|
/// assert_eq!(glm::vec3(-1.0, 1.0, 3.0), glm::ceil(&vec));
|
|
/// ```
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`ceil`](fn.ceil.html)
|
|
/// * [`floor`](fn.floor.html)
|
|
/// * [`fract`](fn.fract.html)
|
|
/// * [`round`](fn.round.html)
|
|
/// * [`trunc`](fn.trunc.html)
|
|
pub fn ceil<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.map(|x| x.ceil())
|
|
}
|
|
|
|
/// Returns `min(max(x, min_val), max_val)`.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`clamp`](fn.clamp.html)
|
|
/// * [`clamp_vec`](fn.clamp_vec.html)
|
|
pub fn clamp_scalar<N: Number>(x: N, min_val: N, max_val: N) -> N {
|
|
na::clamp(x, min_val, max_val)
|
|
}
|
|
|
|
/// Returns `min(max(x[i], min_val), max_val)` for each component in `x` using the floating-point values `min_val and `max_val`.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`clamp_scalar`](fn.clamp_scalar.html)
|
|
/// * [`clamp_vec`](fn.clamp_vec.html)
|
|
pub fn clamp<N: Number, D: Dimension>(x: &TVec<N, D>, min_val: N, max_val: N) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.map(|x| na::clamp(x, min_val, max_val))
|
|
}
|
|
|
|
/// Returns `min(max(x[i], min_val[i]), max_val[i])` for each component in `x` using the components of `min_val` and `max_val` as bounds.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`clamp_scalar`](fn.clamp_scalar.html)
|
|
/// * [`clamp`](fn.clamp.html)
|
|
pub fn clamp_vec<N: Number, D: Dimension>(x: &TVec<N, D>, min_val: &TVec<N, D>, max_val: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
na::clamp(x.clone(), min_val.clone(), max_val.clone())
|
|
}
|
|
|
|
/// Returns a signed integer value representing the encoding of a floating-point value.
|
|
///
|
|
/// The floating-point value's bit-level representation is preserved.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`float_bits_to_int_vec`](fn.float_bits_to_int_vec.html)
|
|
/// * [`float_bits_to_uint`](fn.float_bits_to_uint.html)
|
|
/// * [`float_bits_to_uint_vec`](fn.float_bits_to_uint_vec.html)
|
|
/// * [`int_bits_to_float`](fn.int_bits_to_float.html)
|
|
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
|
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
|
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
|
pub fn float_bits_to_int(v: f32) -> i32 {
|
|
unsafe { mem::transmute(v) }
|
|
}
|
|
|
|
/// Returns a signed integer value representing the encoding of each component of `v`.
|
|
///
|
|
/// The floating point value's bit-level representation is preserved.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`float_bits_to_int`](fn.float_bits_to_int.html)
|
|
/// * [`float_bits_to_uint`](fn.float_bits_to_uint.html)
|
|
/// * [`float_bits_to_uint_vec`](fn.float_bits_to_uint_vec.html)
|
|
/// * [`int_bits_to_float`](fn.int_bits_to_float.html)
|
|
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
|
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
|
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
|
pub fn float_bits_to_int_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<i32, D>
|
|
where DefaultAllocator: Alloc<f32, D> {
|
|
v.map(float_bits_to_int)
|
|
}
|
|
|
|
/// Returns an unsigned integer value representing the encoding of a floating-point value.
|
|
///
|
|
/// The floating-point value's bit-level representation is preserved.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`float_bits_to_int`](fn.float_bits_to_int.html)
|
|
/// * [`float_bits_to_int_vec`](fn.float_bits_to_int_vec.html)
|
|
/// * [`float_bits_to_uint_vec`](fn.float_bits_to_uint_vec.html)
|
|
/// * [`int_bits_to_float`](fn.int_bits_to_float.html)
|
|
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
|
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
|
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
|
pub fn float_bits_to_uint(v: f32) -> u32 {
|
|
unsafe { mem::transmute(v) }
|
|
}
|
|
|
|
/// Returns an unsigned integer value representing the encoding of each component of `v`.
|
|
///
|
|
/// The floating point value's bit-level representation is preserved.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`float_bits_to_int`](fn.float_bits_to_int.html)
|
|
/// * [`float_bits_to_int_vec`](fn.float_bits_to_int_vec.html)
|
|
/// * [`float_bits_to_uint`](fn.float_bits_to_uint.html)
|
|
/// * [`int_bits_to_float`](fn.int_bits_to_float.html)
|
|
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
|
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
|
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
|
pub fn float_bits_to_uint_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<u32, D>
|
|
where DefaultAllocator: Alloc<f32, D> {
|
|
v.map(float_bits_to_uint)
|
|
}
|
|
|
|
/// Returns componentwise a value equal to the nearest integer that is less then or equal to `x`.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra_glm as glm;
|
|
/// let vec = glm::vec3(-1.5, 0.5, 2.8);
|
|
/// assert_eq!(glm::vec3(-2.0, 0.0, 2.0), glm::floor(&vec));
|
|
/// ```
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`ceil`](fn.ceil.html)
|
|
/// * [`fract`](fn.fract.html)
|
|
/// * [`round`](fn.round.html)
|
|
/// * [`trunc`](fn.trunc.html)
|
|
pub fn floor<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.map(|x| x.floor())
|
|
}
|
|
|
|
//// FIXME: should be implemented for TVec/TMat?
|
|
//pub fn fma<N: Number>(a: N, b: N, c: N) -> N {
|
|
// // FIXME: use an actual FMA
|
|
// a * b + c
|
|
//}
|
|
|
|
/// Returns the fractional part of each component of `x`.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra_glm as glm;
|
|
/// let vec = glm::vec3(-1.5, 0.5, 2.25);
|
|
/// assert_eq!(glm::vec3(-0.5, 0.5, 0.25), glm::fract(&vec));
|
|
/// ```
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`ceil`](fn.ceil.html)
|
|
/// * [`floor`](fn.floor.html)
|
|
/// * [`round`](fn.round.html)
|
|
/// * [`trunc`](fn.trunc.html)
|
|
pub fn fract<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.map(|x| x.fract())
|
|
}
|
|
|
|
//// FIXME: should be implemented for TVec/TMat?
|
|
///// Returns the (significant, exponent) of this float number.
|
|
//pub fn frexp<N: Real>(x: N, exp: N) -> (N, N) {
|
|
// // FIXME: is there a better approach?
|
|
// let e = x.log2().ceil();
|
|
// (x * (-e).exp2(), e)
|
|
//}
|
|
|
|
/// Returns a floating-point value corresponding to a signed integer encoding of a floating-point value.
|
|
///
|
|
/// If an inf or NaN is passed in, it will not signal, and the resulting floating point value is unspecified. Otherwise, the bit-level representation is preserved.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`float_bits_to_int`](fn.float_bits_to_int.html)
|
|
/// * [`float_bits_to_int_vec`](fn.float_bits_to_int_vec.html)
|
|
/// * [`float_bits_to_uint`](fn.float_bits_to_uint.html)
|
|
/// * [`float_bits_to_uint_vec`](fn.float_bits_to_uint_vec.html)
|
|
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
|
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
|
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
|
pub fn int_bits_to_float(v: i32) -> f32 {
|
|
f32::from_bits(v as u32)
|
|
|
|
}
|
|
|
|
/// For each components of `v`, returns a floating-point value corresponding to a signed integer encoding of a floating-point value.
|
|
///
|
|
/// If an inf or NaN is passed in, it will not signal, and the resulting floating point value is unspecified. Otherwise, the bit-level representation is preserved.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`float_bits_to_int`](fn.float_bits_to_int.html)
|
|
/// * [`float_bits_to_int_vec`](fn.float_bits_to_int_vec.html)
|
|
/// * [`float_bits_to_uint`](fn.float_bits_to_uint.html)
|
|
/// * [`float_bits_to_uint_vec`](fn.float_bits_to_uint_vec.html)
|
|
/// * [`int_bits_to_float`](fn.int_bits_to_float.html)
|
|
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
|
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
|
pub fn int_bits_to_float_vec<D: Dimension>(v: &TVec<i32, D>) -> TVec<f32, D>
|
|
where DefaultAllocator: Alloc<f32, D> {
|
|
v.map(int_bits_to_float)
|
|
}
|
|
|
|
//pub fn isinf<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<bool, D>
|
|
// where DefaultAllocator: Alloc<N, D> {
|
|
// unimplemented!()
|
|
//
|
|
//}
|
|
//
|
|
//pub fn isnan<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<bool, D>
|
|
// where DefaultAllocator: Alloc<N, D> {
|
|
// unimplemented!()
|
|
//
|
|
//}
|
|
|
|
///// Returns the (significant, exponent) of this float number.
|
|
//pub fn ldexp<N: Real>(x: N, exp: N) -> N {
|
|
// // FIXME: is there a better approach?
|
|
// x * (exp).exp2()
|
|
//}
|
|
|
|
/// Returns `x * (1.0 - a) + y * a`, i.e., the linear blend of x and y using the floating-point value a.
|
|
///
|
|
/// The value for a is not restricted to the range `[0, 1]`.
|
|
pub fn mix<N: Number>(x: N, y: N, a: N) -> N {
|
|
x * (N::one() - a) + y * a
|
|
}
|
|
|
|
/// Component-wise modulus.
|
|
///
|
|
/// Returns `x - y * floor(x / y)` for each component in `x` using the corresponding component of `y`.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`modf`](fn.modf.html)
|
|
pub fn modf_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.zip_map(y, |x, y| x % y)
|
|
}
|
|
|
|
/// Modulus between two values.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`modf_vec`](fn.modf_vec.html)
|
|
pub fn modf<N: Number>(x: N, i: N) -> N {
|
|
x % i
|
|
}
|
|
|
|
/// Component-wise rounding.
|
|
///
|
|
/// Values equal to `0.5` are rounded away from `0.0`.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra_glm as glm;
|
|
/// let vec = glm::vec4(-1.5, 0.6, 1.5, -3.2);
|
|
/// assert_eq!(glm::vec4(-2.0, 1.0, 2.0, -3.0), glm::round(&vec));
|
|
/// ```
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`ceil`](fn.ceil.html)
|
|
/// * [`floor`](fn.floor.html)
|
|
/// * [`fract`](fn.fract.html)
|
|
/// * [`trunc`](fn.trunc.html)
|
|
pub fn round<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.map(|x| x.round())
|
|
|
|
}
|
|
|
|
//pub fn roundEven<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
|
// where DefaultAllocator: Alloc<N, D> {
|
|
// unimplemented!()
|
|
//}
|
|
|
|
/// For each vector component `x`: 1 if `x > 0`, 0 if `x == 0`, or -1 if `x < 0`.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra_glm as glm;
|
|
/// let vec = glm::vec4(-2.0, 0.0, -0.0, 2.0);
|
|
/// assert_eq!(glm::vec4(-1.0, 0.0, 0.0, 1.0), glm::sign(&vec));
|
|
/// ```
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`abs`](fn.abs.html)
|
|
///
|
|
pub fn sign<N: Number, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.map(|x| {
|
|
if x.is_zero() {
|
|
N::zero()
|
|
} else {
|
|
x.signum()
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Returns 0.0 if `x <= edge0` and `1.0 if x >= edge1` and performs smooth Hermite interpolation between 0 and 1 when `edge0 < x < edge1`.
|
|
///
|
|
/// This is useful in cases where you would want a threshold function with a smooth transition.
|
|
/// This is equivalent to: `let result = clamp((x - edge0) / (edge1 - edge0), 0, 1); return t * t * (3 - 2 * t);` Results are undefined if `edge0 >= edge1`.
|
|
pub fn smoothstep<N: Number>(edge0: N, edge1: N, x: N) -> N {
|
|
let _3: N = FromPrimitive::from_f64(3.0).unwrap();
|
|
let _2: N = FromPrimitive::from_f64(2.0).unwrap();
|
|
let t = na::clamp((x - edge0) / (edge1 - edge0), N::zero(), N::one());
|
|
t * t * (_3 - t * _2)
|
|
}
|
|
|
|
/// Returns 0.0 if `x < edge`, otherwise it returns 1.0.
|
|
pub fn step_scalar<N: Number>(edge: N, x: N) -> N {
|
|
if edge > x {
|
|
N::zero()
|
|
} else {
|
|
N::one()
|
|
}
|
|
}
|
|
|
|
/// Returns 0.0 if `x[i] < edge`, otherwise it returns 1.0.
|
|
pub fn step<N: Number, D: Dimension>(edge: N, x: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.map(|x| step_scalar(edge, x))
|
|
}
|
|
|
|
/// Returns 0.0 if `x[i] < edge[i]`, otherwise it returns 1.0.
|
|
pub fn step_vec<N: Number, D: Dimension>(edge: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
edge.zip_map(x, step_scalar)
|
|
}
|
|
|
|
/// Returns a value equal to the nearest integer to `x` whose absolute value is not larger than the absolute value of `x`.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra_glm as glm;
|
|
/// let vec = glm::vec3(-1.5, 0.5, 2.8);
|
|
/// assert_eq!(glm::vec3(-1.0, 0.0, 2.0), glm::trunc(&vec));
|
|
/// ```
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`ceil`](fn.ceil.html)
|
|
/// * [`floor`](fn.floor.html)
|
|
/// * [`fract`](fn.fract.html)
|
|
/// * [`round`](fn.round.html)
|
|
pub fn trunc<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
|
|
where DefaultAllocator: Alloc<N, D> {
|
|
x.map(|x| x.trunc())
|
|
}
|
|
|
|
/// Returns a floating-point value corresponding to a unsigned integer encoding of a floating-point value.
|
|
///
|
|
/// If an `inf` or `NaN` is passed in, it will not signal, and the resulting floating point value is unspecified. Otherwise, the bit-level representation is preserved.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`float_bits_to_int`](fn.float_bits_to_int.html)
|
|
/// * [`float_bits_to_int_vec`](fn.float_bits_to_int_vec.html)
|
|
/// * [`float_bits_to_uint`](fn.float_bits_to_uint.html)
|
|
/// * [`float_bits_to_uint_vec`](fn.float_bits_to_uint_vec.html)
|
|
/// * [`int_bits_to_float`](fn.int_bits_to_float.html)
|
|
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
|
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
|
|
pub fn uint_bits_to_float_scalar(v: u32) -> f32 {
|
|
f32::from_bits(v)
|
|
|
|
}
|
|
|
|
/// For each component of `v`, returns a floating-point value corresponding to a unsigned integer encoding of a floating-point value.
|
|
///
|
|
/// If an inf or NaN is passed in, it will not signal, and the resulting floating point value is unspecified. Otherwise, the bit-level representation is preserved.
|
|
///
|
|
/// # See also:
|
|
///
|
|
/// * [`float_bits_to_int`](fn.float_bits_to_int.html)
|
|
/// * [`float_bits_to_int_vec`](fn.float_bits_to_int_vec.html)
|
|
/// * [`float_bits_to_uint`](fn.float_bits_to_uint.html)
|
|
/// * [`float_bits_to_uint_vec`](fn.float_bits_to_uint_vec.html)
|
|
/// * [`int_bits_to_float`](fn.int_bits_to_float.html)
|
|
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
|
|
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
|
|
pub fn uint_bits_to_float<D: Dimension>(v: &TVec<u32, D>) -> TVec<f32, D>
|
|
where DefaultAllocator: Alloc<f32, D> {
|
|
v.map(uint_bits_to_float_scalar)
|
|
}
|