forked from M-Labs/nalgebra
314 lines
10 KiB
Rust
314 lines
10 KiB
Rust
use simba::scalar::{RealField, SubsetOf, SupersetOf};
|
|
use simba::simd::{PrimitiveSimdValue, SimdRealField, SimdValue};
|
|
|
|
use crate::base::allocator::Allocator;
|
|
use crate::base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
|
|
use crate::base::{DefaultAllocator, MatrixN, Scalar};
|
|
|
|
use crate::geometry::{
|
|
AbstractRotation, Isometry, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
|
|
};
|
|
|
|
/*
|
|
* This file provides the following conversions:
|
|
* =============================================
|
|
*
|
|
* Isometry -> Isometry
|
|
* Isometry -> Similarity
|
|
* Isometry -> Transform
|
|
* Isometry -> Matrix (homogeneous)
|
|
*/
|
|
|
|
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Isometry<N2, D, R2>> for Isometry<N1, D, R1>
|
|
where
|
|
N1: RealField,
|
|
N2: RealField + SupersetOf<N1>,
|
|
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
|
|
R2: AbstractRotation<N2, D>,
|
|
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> Isometry<N2, D, R2> {
|
|
Isometry::from_parts(self.translation.to_superset(), self.rotation.to_superset())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(iso: &Isometry<N2, D, R2>) -> bool {
|
|
crate::is_convertible::<_, Translation<N1, D>>(&iso.translation)
|
|
&& crate::is_convertible::<_, R1>(&iso.rotation)
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(iso: &Isometry<N2, D, R2>) -> Self {
|
|
Isometry::from_parts(
|
|
iso.translation.to_subset_unchecked(),
|
|
iso.rotation.to_subset_unchecked(),
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1, D, R1>
|
|
where
|
|
N1: RealField,
|
|
N2: RealField + SupersetOf<N1>,
|
|
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
|
|
R2: AbstractRotation<N2, D>,
|
|
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> Similarity<N2, D, R2> {
|
|
Similarity::from_isometry(self.to_superset(), N2::one())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool {
|
|
crate::is_convertible::<_, Isometry<N1, D, R1>>(&sim.isometry) && sim.scaling() == N2::one()
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
|
|
crate::convert_ref_unchecked(&sim.isometry)
|
|
}
|
|
}
|
|
|
|
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Isometry<N1, D, R>
|
|
where
|
|
N1: RealField,
|
|
N2: RealField + SupersetOf<N1>,
|
|
C: SuperTCategoryOf<TAffine>,
|
|
R: AbstractRotation<N1, D>
|
|
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
|
|
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
|
|
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
|
|
DefaultAllocator: Allocator<N1, D>
|
|
+ Allocator<N1, D, D>
|
|
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|
+ Allocator<(usize, usize), D>
|
|
+ Allocator<N2, D, D>
|
|
+ Allocator<N2, D>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> Transform<N2, D, C> {
|
|
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(t: &Transform<N2, D, C>) -> bool {
|
|
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
|
|
Self::from_superset_unchecked(t.matrix())
|
|
}
|
|
}
|
|
|
|
impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Isometry<N1, D, R>
|
|
where
|
|
N1: RealField,
|
|
N2: RealField + SupersetOf<N1>,
|
|
R: AbstractRotation<N1, D>
|
|
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
|
|
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
|
|
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
|
|
DefaultAllocator: Allocator<N1, D>
|
|
+ Allocator<N1, D, D>
|
|
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
|
+ Allocator<(usize, usize), D>
|
|
+ Allocator<N2, D, D>
|
|
+ Allocator<N2, D>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>> {
|
|
self.to_homogeneous().to_superset()
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool {
|
|
let rot = m.fixed_slice::<D, D>(0, 0);
|
|
let bottom = m.fixed_slice::<U1, D>(D::dim(), 0);
|
|
|
|
// Scalar types agree.
|
|
m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
|
|
// The block part is a rotation.
|
|
rot.is_special_orthogonal(N2::default_epsilon() * crate::convert(100.0)) &&
|
|
// The bottom row is (0, 0, ..., 1)
|
|
bottom.iter().all(|e| e.is_zero()) && m[(D::dim(), D::dim())] == N2::one()
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
|
|
let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
|
|
let t = Translation {
|
|
vector: crate::convert_unchecked(t),
|
|
};
|
|
|
|
Self::from_parts(t, crate::convert_unchecked(m.clone_owned()))
|
|
}
|
|
}
|
|
|
|
impl<N: SimdRealField, D: DimName, R: AbstractRotation<N, D>> From<Translation<N, D>>
|
|
for Isometry<N, D, R>
|
|
where
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
#[inline]
|
|
fn from(tra: Translation<N, D>) -> Self {
|
|
Self::from_parts(tra, R::identity())
|
|
}
|
|
}
|
|
|
|
impl<N: SimdRealField, D: DimName, R> From<Isometry<N, D, R>> for MatrixN<N, DimNameSum<D, U1>>
|
|
where
|
|
D: DimNameAdd<U1>,
|
|
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
|
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D>,
|
|
{
|
|
#[inline]
|
|
fn from(iso: Isometry<N, D, R>) -> Self {
|
|
iso.to_homogeneous()
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 2]>
|
|
for Isometry<N, D, R>
|
|
where
|
|
N: From<[<N as SimdValue>::Element; 2]>,
|
|
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 2]>,
|
|
R::Element: AbstractRotation<N::Element, D>,
|
|
N::Element: Scalar + Copy,
|
|
R::Element: Scalar + Copy,
|
|
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
|
|
{
|
|
#[inline]
|
|
fn from(arr: [Isometry<N::Element, D, R::Element>; 2]) -> Self {
|
|
let tra = Translation::from([arr[0].translation.clone(), arr[1].translation.clone()]);
|
|
let rot = R::from([arr[0].rotation, arr[0].rotation]);
|
|
|
|
Self::from_parts(tra, rot)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 4]>
|
|
for Isometry<N, D, R>
|
|
where
|
|
N: From<[<N as SimdValue>::Element; 4]>,
|
|
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 4]>,
|
|
R::Element: AbstractRotation<N::Element, D>,
|
|
N::Element: Scalar + Copy,
|
|
R::Element: Scalar + Copy,
|
|
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
|
|
{
|
|
#[inline]
|
|
fn from(arr: [Isometry<N::Element, D, R::Element>; 4]) -> Self {
|
|
let tra = Translation::from([
|
|
arr[0].translation.clone(),
|
|
arr[1].translation.clone(),
|
|
arr[2].translation.clone(),
|
|
arr[3].translation.clone(),
|
|
]);
|
|
let rot = R::from([
|
|
arr[0].rotation,
|
|
arr[1].rotation,
|
|
arr[2].rotation,
|
|
arr[3].rotation,
|
|
]);
|
|
|
|
Self::from_parts(tra, rot)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 8]>
|
|
for Isometry<N, D, R>
|
|
where
|
|
N: From<[<N as SimdValue>::Element; 8]>,
|
|
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 8]>,
|
|
R::Element: AbstractRotation<N::Element, D>,
|
|
N::Element: Scalar + Copy,
|
|
R::Element: Scalar + Copy,
|
|
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
|
|
{
|
|
#[inline]
|
|
fn from(arr: [Isometry<N::Element, D, R::Element>; 8]) -> Self {
|
|
let tra = Translation::from([
|
|
arr[0].translation.clone(),
|
|
arr[1].translation.clone(),
|
|
arr[2].translation.clone(),
|
|
arr[3].translation.clone(),
|
|
arr[4].translation.clone(),
|
|
arr[5].translation.clone(),
|
|
arr[6].translation.clone(),
|
|
arr[7].translation.clone(),
|
|
]);
|
|
let rot = R::from([
|
|
arr[0].rotation,
|
|
arr[1].rotation,
|
|
arr[2].rotation,
|
|
arr[3].rotation,
|
|
arr[4].rotation,
|
|
arr[5].rotation,
|
|
arr[6].rotation,
|
|
arr[7].rotation,
|
|
]);
|
|
|
|
Self::from_parts(tra, rot)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 16]>
|
|
for Isometry<N, D, R>
|
|
where
|
|
N: From<[<N as SimdValue>::Element; 16]>,
|
|
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 16]>,
|
|
R::Element: AbstractRotation<N::Element, D>,
|
|
N::Element: Scalar + Copy,
|
|
R::Element: Scalar + Copy,
|
|
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
|
|
{
|
|
#[inline]
|
|
fn from(arr: [Isometry<N::Element, D, R::Element>; 16]) -> Self {
|
|
let tra = Translation::from([
|
|
arr[0].translation.clone(),
|
|
arr[1].translation.clone(),
|
|
arr[2].translation.clone(),
|
|
arr[3].translation.clone(),
|
|
arr[4].translation.clone(),
|
|
arr[5].translation.clone(),
|
|
arr[6].translation.clone(),
|
|
arr[7].translation.clone(),
|
|
arr[8].translation.clone(),
|
|
arr[9].translation.clone(),
|
|
arr[10].translation.clone(),
|
|
arr[11].translation.clone(),
|
|
arr[12].translation.clone(),
|
|
arr[13].translation.clone(),
|
|
arr[14].translation.clone(),
|
|
arr[15].translation.clone(),
|
|
]);
|
|
let rot = R::from([
|
|
arr[0].rotation,
|
|
arr[1].rotation,
|
|
arr[2].rotation,
|
|
arr[3].rotation,
|
|
arr[4].rotation,
|
|
arr[5].rotation,
|
|
arr[6].rotation,
|
|
arr[7].rotation,
|
|
arr[8].rotation,
|
|
arr[9].rotation,
|
|
arr[10].rotation,
|
|
arr[11].rotation,
|
|
arr[12].rotation,
|
|
arr[13].rotation,
|
|
arr[14].rotation,
|
|
arr[15].rotation,
|
|
]);
|
|
|
|
Self::from_parts(tra, rot)
|
|
}
|
|
}
|