forked from M-Labs/nalgebra
382 lines
13 KiB
Rust
382 lines
13 KiB
Rust
#[cfg(feature = "arbitrary")]
|
||
use quickcheck::{Arbitrary, Gen};
|
||
|
||
use std::ops::Neg;
|
||
use num::Zero;
|
||
use rand::{Rand, Rng};
|
||
use alga::general::Real;
|
||
|
||
use core::{Unit, ColumnVector, SquareMatrix, OwnedSquareMatrix, OwnedColumnVector, Vector3};
|
||
use core::dimension::{U1, U2, U3};
|
||
use core::storage::{Storage, OwnedStorage};
|
||
use core::allocator::{Allocator, OwnedAllocator};
|
||
|
||
use geometry::{RotationBase, OwnedRotation, UnitComplex};
|
||
|
||
|
||
/*
|
||
*
|
||
* 2D RotationBase matrix.
|
||
*
|
||
*/
|
||
impl<N, S> RotationBase<N, U2, S>
|
||
where N: Real,
|
||
S: OwnedStorage<N, U2, U2>,
|
||
S::Alloc: OwnedAllocator<N, U2, U2, S> {
|
||
/// Builds a 2 dimensional rotation matrix from an angle in radian.
|
||
pub fn new(angle: N) -> Self {
|
||
let (sia, coa) = angle.sin_cos();
|
||
Self::from_matrix_unchecked(SquareMatrix::<N, U2, S>::new(coa, -sia, sia, coa))
|
||
}
|
||
|
||
/// Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.
|
||
///
|
||
/// Equivalent to `Self::new(axisangle[0])`.
|
||
#[inline]
|
||
pub fn from_scaled_axis<SB: Storage<N, U1, U1>>(axisangle: ColumnVector<N, U1, SB>) -> Self {
|
||
Self::new(axisangle[0])
|
||
}
|
||
|
||
/// The rotation matrix required to align `a` and `b` but with its angl.
|
||
///
|
||
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
|
||
#[inline]
|
||
pub fn rotation_between<SB, SC>(a: &ColumnVector<N, U2, SB>, b: &ColumnVector<N, U2, SC>) -> Self
|
||
where SB: Storage<N, U2, U1>,
|
||
SC: Storage<N, U2, U1> {
|
||
::convert(UnitComplex::rotation_between(a, b).to_rotation_matrix())
|
||
}
|
||
|
||
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
|
||
/// direction, raised to the power `s`.
|
||
#[inline]
|
||
pub fn scaled_rotation_between<SB, SC>(a: &ColumnVector<N, U2, SB>, b: &ColumnVector<N, U2, SC>, s: N) -> Self
|
||
where SB: Storage<N, U2, U1>,
|
||
SC: Storage<N, U2, U1> {
|
||
::convert(UnitComplex::scaled_rotation_between(a, b, s).to_rotation_matrix())
|
||
}
|
||
}
|
||
|
||
impl<N, S> RotationBase<N, U2, S>
|
||
where N: Real,
|
||
S: Storage<N, U2, U2> {
|
||
/// The rotation angle.
|
||
#[inline]
|
||
pub fn angle(&self) -> N {
|
||
self.matrix()[(1, 0)].atan2(self.matrix()[(0, 0)])
|
||
}
|
||
|
||
/// The rotation angle needed to make `self` and `other` coincide.
|
||
#[inline]
|
||
pub fn angle_to<SB: Storage<N, U2, U2>>(&self, other: &RotationBase<N, U2, SB>) -> N {
|
||
self.rotation_to(other).angle()
|
||
}
|
||
|
||
/// The rotation matrix needed to make `self` and `other` coincide.
|
||
///
|
||
/// The result is such that: `self.rotation_to(other) * self == other`.
|
||
#[inline]
|
||
pub fn rotation_to<SB>(&self, other: &RotationBase<N, U2, SB>) -> OwnedRotation<N, U2, SB::Alloc>
|
||
where SB: Storage<N, U2, U2> {
|
||
other * self.inverse()
|
||
}
|
||
|
||
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the angle
|
||
/// of `self` multiplied by `n`.
|
||
#[inline]
|
||
pub fn powf(&self, n: N) -> OwnedRotation<N, U2, S::Alloc> {
|
||
OwnedRotation::<_, _, S::Alloc>::new(self.angle() * n)
|
||
}
|
||
|
||
/// The rotation angle returned as a 1-dimensional vector.
|
||
#[inline]
|
||
pub fn scaled_axis(&self) -> OwnedColumnVector<N, U1, S::Alloc>
|
||
where S::Alloc: Allocator<N, U1, U1> {
|
||
ColumnVector::<_, U1, _>::new(self.angle())
|
||
}
|
||
}
|
||
|
||
impl<N, S> Rand for RotationBase<N, U2, S>
|
||
where N: Real + Rand,
|
||
S: OwnedStorage<N, U2, U2>,
|
||
S::Alloc: OwnedAllocator<N, U2, U2, S> {
|
||
#[inline]
|
||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||
Self::new(rng.gen())
|
||
}
|
||
}
|
||
|
||
#[cfg(feature="arbitrary")]
|
||
impl<N, S> Arbitrary for RotationBase<N, U2, S>
|
||
where N: Real + Arbitrary,
|
||
S: OwnedStorage<N, U2, U2> + Send,
|
||
S::Alloc: OwnedAllocator<N, U2, U2, S> {
|
||
#[inline]
|
||
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
||
Self::new(N::arbitrary(g))
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
*
|
||
* 3D RotationBase matrix.
|
||
*
|
||
*/
|
||
impl<N, S> RotationBase<N, U3, S>
|
||
where N: Real,
|
||
S: OwnedStorage<N, U3, U3>,
|
||
S::Alloc: OwnedAllocator<N, U3, U3, S> {
|
||
|
||
/// Builds a 3 dimensional rotation matrix from an axis and an angle.
|
||
///
|
||
/// # Arguments
|
||
/// * `axisangle` - A vector representing the rotation. Its magnitude is the amount of rotation
|
||
/// in radian. Its direction is the axis of rotation.
|
||
pub fn new<SB: Storage<N, U3, U1>>(axisangle: ColumnVector<N, U3, SB>) -> Self {
|
||
let (axis, angle) = Unit::new_and_get(axisangle.into_owned());
|
||
Self::from_axis_angle(&axis, angle)
|
||
}
|
||
|
||
/// Builds a 3D rotation matrix from an axis scaled by the rotation angle.
|
||
pub fn from_scaled_axis<SB: Storage<N, U3, U1>>(axisangle: ColumnVector<N, U3, SB>) -> Self {
|
||
Self::new(axisangle)
|
||
}
|
||
|
||
/// Builds a 3D rotation matrix from an axis and a rotation angle.
|
||
pub fn from_axis_angle<SB>(axis: &Unit<ColumnVector<N, U3, SB>>, angle: N) -> Self
|
||
where SB: Storage<N, U3, U1> {
|
||
if angle.is_zero() {
|
||
Self::identity()
|
||
}
|
||
else {
|
||
let ux = axis.as_ref()[0];
|
||
let uy = axis.as_ref()[1];
|
||
let uz = axis.as_ref()[2];
|
||
let sqx = ux * ux;
|
||
let sqy = uy * uy;
|
||
let sqz = uz * uz;
|
||
let (sin, cos) = angle.sin_cos();
|
||
let one_m_cos = N::one() - cos;
|
||
|
||
Self::from_matrix_unchecked(
|
||
SquareMatrix::<N, U3, S>::new(
|
||
(sqx + (N::one() - sqx) * cos),
|
||
(ux * uy * one_m_cos - uz * sin),
|
||
(ux * uz * one_m_cos + uy * sin),
|
||
|
||
(ux * uy * one_m_cos + uz * sin),
|
||
(sqy + (N::one() - sqy) * cos),
|
||
(uy * uz * one_m_cos - ux * sin),
|
||
|
||
(ux * uz * one_m_cos - uy * sin),
|
||
(uy * uz * one_m_cos + ux * sin),
|
||
(sqz + (N::one() - sqz) * cos)))
|
||
}
|
||
}
|
||
|
||
/// Creates a new rotation from Euler angles.
|
||
///
|
||
/// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
|
||
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
|
||
let (sr, cr) = roll.sin_cos();
|
||
let (sp, cp) = pitch.sin_cos();
|
||
let (sy, cy) = yaw.sin_cos();
|
||
|
||
Self::from_matrix_unchecked(
|
||
SquareMatrix::<N, U3, S>::new(
|
||
cy * cp, cy * sp * sr - sy * cr, cy * sp * cr + sy * sr,
|
||
sy * cp, sy * sp * sr + cy * cr, sy * sp * cr - cy * sr,
|
||
-sp, cp * sr, cp * cr)
|
||
)
|
||
}
|
||
|
||
/// Creates a rotation that corresponds to the local frame of an observer standing at the
|
||
/// origin and looking toward `dir`.
|
||
///
|
||
/// It maps the view direction `dir` to the positive `z` axis.
|
||
///
|
||
/// # Arguments
|
||
/// * dir - The look direction, that is, direction the matrix `z` axis will be aligned with.
|
||
/// * up - The vertical direction. The only requirement of this parameter is to not be
|
||
/// collinear
|
||
/// to `dir`. Non-collinearity is not checked.
|
||
#[inline]
|
||
pub fn new_observer_frame<SB, SC>(dir: &ColumnVector<N, U3, SB>, up: &ColumnVector<N, U3, SC>) -> Self
|
||
where SB: Storage<N, U3, U1>,
|
||
SC: Storage<N, U3, U1> {
|
||
let zaxis = dir.normalize();
|
||
let xaxis = up.cross(&zaxis).normalize();
|
||
let yaxis = zaxis.cross(&xaxis).normalize();
|
||
|
||
Self::from_matrix_unchecked(SquareMatrix::<N, U3, S>::new(
|
||
xaxis.x, yaxis.x, zaxis.x,
|
||
xaxis.y, yaxis.y, zaxis.y,
|
||
xaxis.z, yaxis.z, zaxis.z))
|
||
}
|
||
|
||
|
||
/// Builds a right-handed look-at view matrix without translation.
|
||
///
|
||
/// This conforms to the common notion of right handed look-at matrix from the computer
|
||
/// graphics community.
|
||
///
|
||
/// # Arguments
|
||
/// * eye - The eye position.
|
||
/// * target - The target position.
|
||
/// * up - A vector approximately aligned with required the vertical axis. The only
|
||
/// requirement of this parameter is to not be collinear to `target - eye`.
|
||
#[inline]
|
||
pub fn look_at_rh<SB, SC>(dir: &ColumnVector<N, U3, SB>, up: &ColumnVector<N, U3, SC>) -> Self
|
||
where SB: Storage<N, U3, U1>,
|
||
SC: Storage<N, U3, U1> {
|
||
Self::new_observer_frame(&dir.neg(), up).inverse()
|
||
}
|
||
|
||
/// Builds a left-handed look-at view matrix without translation.
|
||
///
|
||
/// This conforms to the common notion of left handed look-at matrix from the computer
|
||
/// graphics community.
|
||
///
|
||
/// # Arguments
|
||
/// * eye - The eye position.
|
||
/// * target - The target position.
|
||
/// * up - A vector approximately aligned with required the vertical axis. The only
|
||
/// requirement of this parameter is to not be collinear to `target - eye`.
|
||
#[inline]
|
||
pub fn look_at_lh<SB, SC>(dir: &ColumnVector<N, U3, SB>, up: &ColumnVector<N, U3, SC>) -> Self
|
||
where SB: Storage<N, U3, U1>,
|
||
SC: Storage<N, U3, U1> {
|
||
Self::new_observer_frame(dir, up).inverse()
|
||
}
|
||
|
||
/// The rotation matrix required to align `a` and `b` but with its angl.
|
||
///
|
||
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
|
||
#[inline]
|
||
pub fn rotation_between<SB, SC>(a: &ColumnVector<N, U3, SB>, b: &ColumnVector<N, U3, SC>) -> Option<Self>
|
||
where SB: Storage<N, U3, U1>,
|
||
SC: Storage<N, U3, U1> {
|
||
Self::scaled_rotation_between(a, b, N::one())
|
||
}
|
||
|
||
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
|
||
/// direction, raised to the power `s`.
|
||
#[inline]
|
||
pub fn scaled_rotation_between<SB, SC>(a: &ColumnVector<N, U3, SB>, b: &ColumnVector<N, U3, SC>, n: N)
|
||
-> Option<Self>
|
||
where SB: Storage<N, U3, U1>,
|
||
SC: Storage<N, U3, U1> {
|
||
// FIXME: code duplication with RotationBase.
|
||
if let (Some(na), Some(nb)) = (a.try_normalize(N::zero()), b.try_normalize(N::zero())) {
|
||
let c = na.cross(&nb);
|
||
|
||
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
|
||
return Some(Self::from_axis_angle(&axis, na.dot(&nb).acos() * n))
|
||
}
|
||
|
||
// Zero or PI.
|
||
if na.dot(&nb) < N::zero() {
|
||
// PI
|
||
//
|
||
// The rotation axis is undefined but the angle not zero. This is not a
|
||
// simple rotation.
|
||
return None;
|
||
}
|
||
}
|
||
|
||
Some(Self::identity())
|
||
}
|
||
}
|
||
|
||
impl<N, S> RotationBase<N, U3, S>
|
||
where N: Real,
|
||
S: Storage<N, U3, U3> {
|
||
/// The rotation angle.
|
||
#[inline]
|
||
pub fn angle(&self) -> N {
|
||
((self.matrix()[(0, 0)] + self.matrix()[(1, 1)] + self.matrix()[(2, 2)] - N::one()) / ::convert(2.0)).acos()
|
||
}
|
||
}
|
||
|
||
impl<N, S> RotationBase<N, U3, S>
|
||
where N: Real,
|
||
S: Storage<N, U3, U3>,
|
||
S::Alloc: Allocator<N, U3, U1> {
|
||
/// The rotation axis. Returns `None` if the rotation angle is zero or PI.
|
||
#[inline]
|
||
pub fn axis(&self) -> Option<Unit<OwnedColumnVector<N, U3, S::Alloc>>> {
|
||
let axis = OwnedColumnVector::<N, U3, S::Alloc>::new(
|
||
self.matrix()[(2, 1)] - self.matrix()[(1, 2)],
|
||
self.matrix()[(0, 2)] - self.matrix()[(2, 0)],
|
||
self.matrix()[(1, 0)] - self.matrix()[(0, 1)]);
|
||
|
||
Unit::try_new(axis, N::default_epsilon())
|
||
}
|
||
|
||
/// The rotation axis multiplied by the rotation angle.
|
||
#[inline]
|
||
pub fn scaled_axis(&self) -> OwnedColumnVector<N, U3, S::Alloc> {
|
||
if let Some(axis) = self.axis() {
|
||
axis.unwrap() * self.angle()
|
||
}
|
||
else {
|
||
ColumnVector::zero()
|
||
}
|
||
}
|
||
|
||
/// The rotation angle needed to make `self` and `other` coincide.
|
||
#[inline]
|
||
pub fn angle_to<SB: Storage<N, U3, U3>>(&self, other: &RotationBase<N, U3, SB>) -> N {
|
||
self.rotation_to(other).angle()
|
||
}
|
||
|
||
/// The rotation matrix needed to make `self` and `other` coincide.
|
||
///
|
||
/// The result is such that: `self.rotation_to(other) * self == other`.
|
||
#[inline]
|
||
pub fn rotation_to<SB>(&self, other: &RotationBase<N, U3, SB>) -> OwnedRotation<N, U3, SB::Alloc>
|
||
where SB: Storage<N, U3, U3> {
|
||
other * self.inverse()
|
||
}
|
||
|
||
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the same
|
||
/// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
|
||
#[inline]
|
||
pub fn powf(&self, n: N) -> OwnedRotation<N, U3, S::Alloc> {
|
||
if let Some(axis) = self.axis() {
|
||
OwnedRotation::<_, _, S::Alloc>::from_axis_angle(&axis, self.angle() * n)
|
||
}
|
||
else if self.matrix()[(0, 0)] < N::zero() {
|
||
let minus_id = OwnedSquareMatrix::<N, U3, S::Alloc>::from_diagonal_element(-N::one());
|
||
OwnedRotation::<_, _, S::Alloc>::from_matrix_unchecked(minus_id)
|
||
}
|
||
else {
|
||
OwnedRotation::<_, _, S::Alloc>::identity()
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<N, S> Rand for RotationBase<N, U3, S>
|
||
where N: Real + Rand,
|
||
S: OwnedStorage<N, U3, U3>,
|
||
S::Alloc: OwnedAllocator<N, U3, U3, S> +
|
||
Allocator<N, U3, U1> {
|
||
#[inline]
|
||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||
Self::new(Vector3::rand(rng))
|
||
}
|
||
}
|
||
|
||
#[cfg(feature="arbitrary")]
|
||
impl<N, S> Arbitrary for RotationBase<N, U3, S>
|
||
where N: Real + Arbitrary,
|
||
S: OwnedStorage<N, U3, U3> + Send,
|
||
S::Alloc: OwnedAllocator<N, U3, U3, S> +
|
||
Allocator<N, U3, U1> {
|
||
#[inline]
|
||
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
||
Self::new(Vector3::arbitrary(g))
|
||
}
|
||
}
|