forked from M-Labs/nalgebra
561 lines
22 KiB
Rust
561 lines
22 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
||
use serde;
|
||
|
||
use num_complex::Complex;
|
||
use std::ops::MulAssign;
|
||
|
||
use alga::general::Real;
|
||
use core::{Matrix, MatrixMN, VectorN, DefaultAllocator, Matrix2x3, Vector2};
|
||
use dimension::{Dim, DimMin, DimMinimum, DimSub, DimDiff, U1, U2};
|
||
use storage::Storage;
|
||
use allocator::Allocator;
|
||
use constraint::{ShapeConstraint, SameNumberOfRows};
|
||
|
||
use linalg::givens;
|
||
use linalg::symmetric_eigen;
|
||
use linalg::Bidiagonal;
|
||
use geometry::UnitComplex;
|
||
|
||
|
||
|
||
/// Singular Value Decomposition of a general matrix.
|
||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||
#[cfg_attr(feature = "serde-serialize",
|
||
serde(bound(serialize =
|
||
"DefaultAllocator: Allocator<N, R, C> +
|
||
Allocator<N, DimMinimum<R, C>> +
|
||
Allocator<N, DimMinimum<R, C>, C> +
|
||
Allocator<N, R, DimMinimum<R, C>>,
|
||
MatrixMN<N, R, DimMinimum<R, C>>: serde::Serialize,
|
||
MatrixMN<N, DimMinimum<R, C>, C>: serde::Serialize,
|
||
VectorN<N, DimMinimum<R, C>>: serde::Serialize")))]
|
||
#[cfg_attr(feature = "serde-serialize",
|
||
serde(bound(deserialize =
|
||
"DefaultAllocator: Allocator<N, R, C> +
|
||
Allocator<N, DimMinimum<R, C>> +
|
||
Allocator<N, DimMinimum<R, C>, C> +
|
||
Allocator<N, R, DimMinimum<R, C>>,
|
||
MatrixMN<N, R, DimMinimum<R, C>>: serde::Deserialize<'de>,
|
||
MatrixMN<N, DimMinimum<R, C>, C>: serde::Deserialize<'de>,
|
||
VectorN<N, DimMinimum<R, C>>: serde::Deserialize<'de>")))]
|
||
#[derive(Clone, Debug)]
|
||
pub struct SVD<N: Real, R: DimMin<C>, C: Dim>
|
||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> +
|
||
Allocator<N, R, DimMinimum<R, C>> +
|
||
Allocator<N, DimMinimum<R, C>> {
|
||
/// The left-singular vectors `U` of this SVD.
|
||
pub u: Option<MatrixMN<N, R, DimMinimum<R, C>>>,
|
||
/// The right-singular vectors `V^t` of this SVD.
|
||
pub v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>,
|
||
/// The singular values of this SVD.
|
||
pub singular_values: VectorN<N, DimMinimum<R, C>>,
|
||
}
|
||
|
||
|
||
impl<N: Real, R: DimMin<C>, C: Dim> Copy for SVD<N, R, C>
|
||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> +
|
||
Allocator<N, R, DimMinimum<R, C>> +
|
||
Allocator<N, DimMinimum<R, C>>,
|
||
MatrixMN<N, R, DimMinimum<R, C>>: Copy,
|
||
MatrixMN<N, DimMinimum<R, C>, C>: Copy,
|
||
VectorN<N, DimMinimum<R, C>>: Copy { }
|
||
|
||
impl<N: Real, R: DimMin<C>, C: Dim> SVD<N, R, C>
|
||
where DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||
DefaultAllocator: Allocator<N, R, C> +
|
||
Allocator<N, C> + // for Bidiagonal
|
||
Allocator<N, R> + // for Bidiagonal
|
||
Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + // for Bidiagonal
|
||
Allocator<N, DimMinimum<R, C>, C> +
|
||
Allocator<N, R, DimMinimum<R, C>> +
|
||
Allocator<N, DimMinimum<R, C>> {
|
||
|
||
/// Computes the Singular Value Decomposition of `matrix` using implicit shift.
|
||
pub fn new(matrix: MatrixMN<N, R, C>, compute_u: bool, compute_v: bool) -> Self {
|
||
Self::try_new(matrix, compute_u, compute_v, N::default_epsilon(), 0).unwrap()
|
||
}
|
||
|
||
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `compute_u` − set this to `true` to enable the computation of left-singular vectors.
|
||
/// * `compute_v` − set this to `true` to enable the computation of left-singular vectors.
|
||
/// * `eps` − tolerence used to determine when a value converged to 0.
|
||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||
/// continues indefinitely until convergence.
|
||
pub fn try_new(mut matrix: MatrixMN<N, R, C>,
|
||
compute_u: bool,
|
||
compute_v: bool,
|
||
eps: N,
|
||
max_niter: usize)
|
||
-> Option<Self> {
|
||
assert!(matrix.len() != 0, "Cannot compute the SVD of an empty matrix.");
|
||
let (nrows, ncols) = matrix.data.shape();
|
||
let min_nrows_ncols = nrows.min(ncols);
|
||
let dim = min_nrows_ncols.value();
|
||
|
||
let m_amax = matrix.amax();
|
||
|
||
if !m_amax.is_zero() {
|
||
matrix /= m_amax;
|
||
}
|
||
|
||
let mut b = Bidiagonal::new(matrix);
|
||
let mut u = if compute_u { Some(b.u()) } else { None };
|
||
let mut v_t = if compute_v { Some(b.v_t()) } else { None };
|
||
|
||
let mut niter = 0;
|
||
let (mut start, mut end) = Self::delimit_subproblem(&mut b, &mut u, &mut v_t, dim - 1, eps);
|
||
|
||
while end != start {
|
||
let subdim = end - start + 1;
|
||
|
||
// Solve the subproblem.
|
||
if subdim > 2 {
|
||
let m = end - 1;
|
||
let n = end;
|
||
|
||
let mut vec;
|
||
{
|
||
let dm = b.diagonal[m];
|
||
let dn = b.diagonal[n];
|
||
let fm = b.off_diagonal[m];
|
||
|
||
let tmm = dm * dm + b.off_diagonal[m - 1] * b.off_diagonal[m - 1];
|
||
let tmn = dm * fm;
|
||
let tnn = dn * dn + fm * fm;
|
||
|
||
let shift = symmetric_eigen::wilkinson_shift(tmm, tnn, tmn);
|
||
|
||
vec = Vector2::new(b.diagonal[start] * b.diagonal[start] - shift,
|
||
b.diagonal[start] * b.off_diagonal[start]);
|
||
}
|
||
|
||
|
||
for k in start .. n {
|
||
let m12 = if k == n - 1 { N::zero() } else { b.off_diagonal[k + 1] };
|
||
|
||
let mut subm = Matrix2x3::new(
|
||
b.diagonal[k], b.off_diagonal[k], N::zero(),
|
||
N::zero(), b.diagonal[k + 1], m12);
|
||
|
||
if let Some((rot1, norm1)) = givens::cancel_y(&vec) {
|
||
rot1.conjugate().rotate_rows(&mut subm.fixed_columns_mut::<U2>(0));
|
||
|
||
if k > start {
|
||
// This is not the first iteration.
|
||
b.off_diagonal[k - 1] = norm1;
|
||
}
|
||
|
||
let v = Vector2::new(subm[(0, 0)], subm[(1, 0)]);
|
||
// FIXME: does the case `v.y == 0` ever happen?
|
||
let (rot2, norm2) = givens::cancel_y(&v).unwrap_or((UnitComplex::identity(), subm[(0, 0)]));
|
||
rot2.rotate(&mut subm.fixed_columns_mut::<U2>(1));
|
||
subm[(0, 0)] = norm2;
|
||
|
||
if let Some(ref mut v_t) = v_t {
|
||
if b.is_upper_diagonal() {
|
||
rot1.rotate(&mut v_t.fixed_rows_mut::<U2>(k));
|
||
}
|
||
else {
|
||
rot2.rotate(&mut v_t.fixed_rows_mut::<U2>(k));
|
||
}
|
||
}
|
||
|
||
if let Some(ref mut u) = u {
|
||
if b.is_upper_diagonal() {
|
||
rot2.inverse().rotate_rows(&mut u.fixed_columns_mut::<U2>(k));
|
||
}
|
||
else {
|
||
rot1.inverse().rotate_rows(&mut u.fixed_columns_mut::<U2>(k));
|
||
}
|
||
}
|
||
|
||
b.diagonal[k + 0] = subm[(0, 0)];
|
||
b.diagonal[k + 1] = subm[(1, 1)];
|
||
b.off_diagonal[k + 0] = subm[(0, 1)];
|
||
|
||
if k != n - 1 {
|
||
b.off_diagonal[k + 1] = subm[(1, 2)];
|
||
}
|
||
|
||
vec.x = subm[(0, 1)];
|
||
vec.y = subm[(0, 2)];
|
||
}
|
||
else {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else if subdim == 2 {
|
||
// Solve the remaining 2x2 subproblem.
|
||
let (u2, s, v2) = Self::compute_2x2_uptrig_svd(
|
||
b.diagonal[start], b.off_diagonal[start], b.diagonal[start + 1],
|
||
compute_u && b.is_upper_diagonal() || compute_v && !b.is_upper_diagonal(),
|
||
compute_v && b.is_upper_diagonal() || compute_u && !b.is_upper_diagonal());
|
||
|
||
b.diagonal[start + 0] = s[0];
|
||
b.diagonal[start + 1] = s[1];
|
||
b.off_diagonal[start] = N::zero();
|
||
|
||
if let Some(ref mut u) = u {
|
||
let rot = if b.is_upper_diagonal() { u2.unwrap() } else { v2.unwrap() };
|
||
rot.rotate_rows(&mut u.fixed_columns_mut::<U2>(start));
|
||
}
|
||
|
||
if let Some(ref mut v_t) = v_t {
|
||
let rot = if b.is_upper_diagonal() { v2.unwrap() } else { u2.unwrap() };
|
||
rot.inverse().rotate(&mut v_t.fixed_rows_mut::<U2>(start));
|
||
}
|
||
|
||
end -= 1;
|
||
}
|
||
|
||
// Re-delimit the suproblem in case some decoupling occured.
|
||
let sub = Self::delimit_subproblem(&mut b, &mut u, &mut v_t, end, eps);
|
||
start = sub.0;
|
||
end = sub.1;
|
||
|
||
niter += 1;
|
||
if niter == max_niter {
|
||
return None;
|
||
}
|
||
}
|
||
|
||
b.diagonal *= m_amax;
|
||
|
||
// Ensure all singular value are non-negative.
|
||
for i in 0 .. dim {
|
||
let sval = b.diagonal[i];
|
||
if sval < N::zero() {
|
||
b.diagonal[i] = -sval;
|
||
|
||
if let Some(ref mut u) = u {
|
||
u.column_mut(i).neg_mut();
|
||
}
|
||
}
|
||
}
|
||
|
||
Some(SVD { u: u, v_t: v_t, singular_values: b.diagonal })
|
||
}
|
||
|
||
// Explicit formulaes inspired from the paper "Computing the Singular Values of 2-by-2 Complex
|
||
// Matrices", Sanzheng Qiao and Xiaohong Wang.
|
||
// http://www.cas.mcmaster.ca/sqrl/papers/sqrl5.pdf
|
||
fn compute_2x2_uptrig_svd(m11: N, m12: N, m22: N, compute_u: bool, compute_v: bool)
|
||
-> (Option<UnitComplex<N>>, Vector2<N>, Option<UnitComplex<N>>) {
|
||
|
||
let two: N = ::convert(2.0f64);
|
||
let half: N = ::convert(0.5f64);
|
||
|
||
let denom = (m11 + m22).hypot(m12) + (m11 - m22).hypot(m12);
|
||
|
||
// NOTE: v1 is the singular value that is the closest to m22.
|
||
// This prevents cancellation issues when constructing the vector `csv` bellow. If we chose
|
||
// otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrofic
|
||
// cancellation on `v1 * v1 - m11 * m11` bellow.
|
||
let v1 = two * m11 * m22 / denom;
|
||
let v2 = half * denom;
|
||
|
||
let mut u = None;
|
||
let mut v_t = None;
|
||
|
||
if compute_u || compute_v {
|
||
let csv = Vector2::new(m11 * m12, v1 * v1 - m11 * m11).normalize();
|
||
|
||
if compute_v {
|
||
v_t = Some(UnitComplex::new_unchecked(Complex::new(csv.x, csv.y)));
|
||
}
|
||
|
||
if compute_u {
|
||
let cu = (m11 * csv.x + m12 * csv.y) / v1;
|
||
let su = (m22 * csv.y) / v1;
|
||
|
||
u = Some(UnitComplex::new_unchecked(Complex::new(cu, su)));
|
||
}
|
||
}
|
||
|
||
(u, Vector2::new(v1, v2), v_t)
|
||
}
|
||
|
||
/*
|
||
fn display_bidiag(b: &Bidiagonal<N, R, C>, begin: usize, end: usize) {
|
||
for i in begin .. end {
|
||
for k in begin .. i {
|
||
print!(" ");
|
||
}
|
||
println!("{} {}", b.diagonal[i], b.off_diagonal[i]);
|
||
}
|
||
for k in begin .. end {
|
||
print!(" ");
|
||
}
|
||
println!("{}", b.diagonal[end]);
|
||
}
|
||
*/
|
||
|
||
fn delimit_subproblem(b: &mut Bidiagonal<N, R, C>,
|
||
u: &mut Option<MatrixMN<N, R, DimMinimum<R, C>>>,
|
||
v_t: &mut Option<MatrixMN<N, DimMinimum<R, C>, C>>,
|
||
end: usize,
|
||
eps: N)
|
||
-> (usize, usize) {
|
||
let mut n = end;
|
||
|
||
while n > 0 {
|
||
let m = n - 1;
|
||
|
||
if b.off_diagonal[m].is_zero() ||
|
||
b.off_diagonal[m].abs() <= eps * (b.diagonal[n].abs() + b.diagonal[m].abs()) {
|
||
|
||
b.off_diagonal[m] = N::zero();
|
||
}
|
||
else if b.diagonal[m].abs() <= eps {
|
||
b.diagonal[m] = N::zero();
|
||
Self::cancel_horizontal_off_diagonal_elt(b, u, v_t, m, m + 1);
|
||
|
||
if m != 0 {
|
||
Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m - 1);
|
||
}
|
||
}
|
||
else if b.diagonal[n].abs() <= eps {
|
||
b.diagonal[n] = N::zero();
|
||
Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m);
|
||
}
|
||
else {
|
||
break;
|
||
}
|
||
|
||
n -= 1;
|
||
}
|
||
|
||
if n == 0 {
|
||
return (0, 0);
|
||
}
|
||
|
||
let mut new_start = n - 1;
|
||
while new_start > 0 {
|
||
let m = new_start - 1;
|
||
|
||
if b.off_diagonal[m].abs() <= eps * (b.diagonal[new_start].abs() + b.diagonal[m].abs()) {
|
||
b.off_diagonal[m] = N::zero();
|
||
break;
|
||
}
|
||
// FIXME: write a test that enters this case.
|
||
else if b.diagonal[m].abs() <= eps {
|
||
b.diagonal[m] = N::zero();
|
||
Self::cancel_horizontal_off_diagonal_elt(b, u, v_t, m, n);
|
||
|
||
if m != 0 {
|
||
Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m - 1);
|
||
}
|
||
break;
|
||
}
|
||
|
||
new_start -= 1;
|
||
}
|
||
|
||
(new_start, n)
|
||
}
|
||
|
||
// Cancels the i-th off-diagonal element using givens rotations.
|
||
fn cancel_horizontal_off_diagonal_elt(b: &mut Bidiagonal<N, R, C>,
|
||
u: &mut Option<MatrixMN<N, R, DimMinimum<R, C>>>,
|
||
v_t: &mut Option<MatrixMN<N, DimMinimum<R, C>, C>>,
|
||
i: usize,
|
||
end: usize) {
|
||
let mut v = Vector2::new(b.off_diagonal[i], b.diagonal[i + 1]);
|
||
b.off_diagonal[i] = N::zero();
|
||
|
||
for k in i .. end {
|
||
if let Some((rot, norm)) = givens::cancel_x(&v) {
|
||
b.diagonal[k + 1] = norm;
|
||
|
||
if b.is_upper_diagonal() {
|
||
if let Some(ref mut u) = *u {
|
||
rot.inverse().rotate_rows(&mut u.fixed_columns_with_step_mut::<U2>(i, k - i));
|
||
}
|
||
}
|
||
else if let Some(ref mut v_t) = *v_t {
|
||
rot.rotate(&mut v_t.fixed_rows_with_step_mut::<U2>(i, k - i));
|
||
}
|
||
|
||
if k + 1 != end {
|
||
v.x = -rot.sin_angle() * b.off_diagonal[k + 1];
|
||
v.y = b.diagonal[k + 2];
|
||
b.off_diagonal[k + 1] *= rot.cos_angle();
|
||
}
|
||
}
|
||
else {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Cancels the i-th off-diagonal element using givens rotations.
|
||
fn cancel_vertical_off_diagonal_elt(b: &mut Bidiagonal<N, R, C>,
|
||
u: &mut Option<MatrixMN<N, R, DimMinimum<R, C>>>,
|
||
v_t: &mut Option<MatrixMN<N, DimMinimum<R, C>, C>>,
|
||
i: usize) {
|
||
let mut v = Vector2::new(b.diagonal[i], b.off_diagonal[i]);
|
||
b.off_diagonal[i] = N::zero();
|
||
|
||
for k in (0 .. i + 1).rev() {
|
||
if let Some((rot, norm)) = givens::cancel_y(&v) {
|
||
b.diagonal[k] = norm;
|
||
|
||
if b.is_upper_diagonal() {
|
||
if let Some(ref mut v_t) = *v_t {
|
||
rot.rotate(&mut v_t.fixed_rows_with_step_mut::<U2>(k, i - k));
|
||
}
|
||
}
|
||
else if let Some(ref mut u) = *u {
|
||
rot.inverse().rotate_rows(&mut u.fixed_columns_with_step_mut::<U2>(k, i - k));
|
||
}
|
||
|
||
if k > 0 {
|
||
v.x = b.diagonal[k - 1];
|
||
v.y = rot.sin_angle() * b.off_diagonal[k - 1];
|
||
b.off_diagonal[k - 1] *= rot.cos_angle();
|
||
}
|
||
}
|
||
else {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Computes the rank of the decomposed matrix, i.e., the number of singular values greater
|
||
/// than `eps`.
|
||
pub fn rank(&self, eps: N) -> usize {
|
||
assert!(eps >= N::zero(), "SVD rank: the epsilon must be non-negative.");
|
||
self.singular_values.iter().filter(|e| **e > eps).count()
|
||
}
|
||
|
||
/// Rebuild the original matrix.
|
||
///
|
||
/// This is useful if some of the singular values have been manually modified. Panics if the
|
||
/// right- and left- singular vectors have not been computed at construction-time.
|
||
pub fn recompose(self) -> MatrixMN<N, R, C> {
|
||
let mut u = self.u.expect("SVD recomposition: U has not been computed.");
|
||
let v_t = self.v_t.expect("SVD recomposition: V^t has not been computed.");
|
||
|
||
for i in 0 .. self.singular_values.len() {
|
||
let val = self.singular_values[i];
|
||
u.column_mut(i).mul_assign(val);
|
||
}
|
||
|
||
u * v_t
|
||
}
|
||
|
||
/// Computes the pseudo-inverse of the decomposed matrix.
|
||
///
|
||
/// Any singular value smaller than `eps` is assumed to be zero.
|
||
/// Panics if the right- and left- singular vectors have not been computed at
|
||
/// construction-time.
|
||
pub fn pseudo_inverse(mut self, eps: N) -> MatrixMN<N, C, R>
|
||
where DefaultAllocator: Allocator<N, C, R> {
|
||
|
||
assert!(eps >= N::zero(), "SVD pseudo inverse: the epsilon must be non-negative.");
|
||
for i in 0 .. self.singular_values.len() {
|
||
let val = self.singular_values[i];
|
||
|
||
if val > eps {
|
||
self.singular_values[i] = N::one() / val;
|
||
}
|
||
else {
|
||
self.singular_values[i] = N::zero();
|
||
}
|
||
}
|
||
|
||
self.recompose().transpose()
|
||
}
|
||
|
||
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
|
||
///
|
||
/// Any singular value smaller than `eps` is assumed to be zero.
|
||
/// Returns `None` if the singular vectors `U` and `V` have not been computed.
|
||
// FIXME: make this more generic wrt the storage types and the dimensions for `b`.
|
||
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>, eps: N) -> MatrixMN<N, C, C2>
|
||
where S2: Storage<N, R2, C2>,
|
||
DefaultAllocator: Allocator<N, C, C2> +
|
||
Allocator<N, DimMinimum<R, C>, C2>,
|
||
ShapeConstraint: SameNumberOfRows<R, R2> {
|
||
|
||
assert!(eps >= N::zero(), "SVD solve: the epsilon must be non-negative.");
|
||
let u = self.u.as_ref().expect("SVD solve: U has not been computed.");
|
||
let v_t = self.v_t.as_ref().expect("SVD solve: V^t has not been computed.");
|
||
|
||
let mut ut_b = u.tr_mul(b);
|
||
|
||
for j in 0 .. ut_b.ncols() {
|
||
let mut col = ut_b.column_mut(j);
|
||
|
||
for i in 0 .. self.singular_values.len() {
|
||
let val = self.singular_values[i];
|
||
if val > eps {
|
||
col[i] /= val;
|
||
}
|
||
else {
|
||
col[i] = N::zero();
|
||
}
|
||
}
|
||
}
|
||
|
||
v_t.tr_mul(&ut_b)
|
||
}
|
||
}
|
||
|
||
|
||
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||
where DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||
DefaultAllocator: Allocator<N, R, C> +
|
||
Allocator<N, C> + // for Bidiagonal
|
||
Allocator<N, R> + // for Bidiagonal
|
||
Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + // for Bidiagonal
|
||
Allocator<N, DimMinimum<R, C>, C> +
|
||
Allocator<N, R, DimMinimum<R, C>> +
|
||
Allocator<N, DimMinimum<R, C>> {
|
||
/// Computes the Singular Value Decomposition using implicit shift.
|
||
pub fn svd(self, compute_u: bool, compute_v: bool) -> SVD<N, R, C> {
|
||
SVD::new(self.into_owned(), compute_u, compute_v)
|
||
}
|
||
|
||
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `compute_u` − set this to `true` to enable the computation of left-singular vectors.
|
||
/// * `compute_v` − set this to `true` to enable the computation of left-singular vectors.
|
||
/// * `eps` − tolerence used to determine when a value converged to 0.
|
||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||
/// continues indefinitely until convergence.
|
||
pub fn try_svd(self, compute_u: bool, compute_v: bool, eps: N, max_niter: usize) -> Option<SVD<N, R, C>> {
|
||
SVD::try_new(self.into_owned(), compute_u, compute_v, eps, max_niter)
|
||
}
|
||
|
||
/// Computes the singular values of this matrix.
|
||
pub fn singular_values(&self) -> VectorN<N, DimMinimum<R, C>> {
|
||
SVD::new(self.clone_owned(), false, false).singular_values
|
||
}
|
||
|
||
/// Computes the rank of this matrix.
|
||
///
|
||
/// All singular values bellow `eps` are considered equal to 0.
|
||
pub fn rank(&self, eps: N) -> usize {
|
||
let svd = SVD::new(self.clone_owned(), false, false);
|
||
svd.rank(eps)
|
||
}
|
||
|
||
/// Computes the pseudo-inverse of this matrix.
|
||
///
|
||
/// All singular values bellow `eps` are considered equal to 0.
|
||
pub fn pseudo_inverse(self, eps: N) -> MatrixMN<N, C, R>
|
||
where DefaultAllocator: Allocator<N, C, R> {
|
||
|
||
SVD::new(self.clone_owned(), true, true).pseudo_inverse(eps)
|
||
}
|
||
}
|