nalgebra/src/geometry/translation.rs
Sébastien Crozet a67c451ae5 Merge pull request #607 from cauthmann/dev
Add #[must_use] to all functions with a _mut variant (#598)
2020-03-02 12:45:39 +01:00

316 lines
8.8 KiB
Rust
Executable File

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::{ClosedAdd, ClosedNeg, ClosedSub, RealField};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{DefaultAllocator, MatrixN, Scalar, VectorN};
use crate::geometry::Point;
/// A translation.
#[repr(C)]
#[derive(Debug)]
pub struct Translation<N: Scalar, D: DimName>
where DefaultAllocator: Allocator<N, D>
{
/// The translation coordinates, i.e., how much is added to a point's coordinates when it is
/// translated.
pub vector: VectorN<N, D>,
}
impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.vector.hash(state)
}
}
impl<N: Scalar + Copy, D: DimName> Copy for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
{}
impl<N: Scalar, D: DimName> Clone for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Clone,
{
#[inline]
fn clone(&self) -> Self {
Translation::from(self.vector.clone())
}
}
#[cfg(feature = "abomonation-serialize")]
impl<N, D> Abomonation for Translation<N, D>
where
N: Scalar,
D: DimName,
VectorN<N, D>: Abomonation,
DefaultAllocator: Allocator<N, D>,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.vector.entomb(writer)
}
fn extent(&self) -> usize {
self.vector.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.vector.exhume(bytes)
}
}
#[cfg(feature = "serde-serialize")]
impl<N: Scalar, D: DimName> Serialize for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer {
self.vector.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where Des: Deserializer<'a> {
let matrix = VectorN::<N, D>::deserialize(deserializer)?;
Ok(Translation::from(matrix))
}
}
impl<N: Scalar, D: DimName> Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
/// Creates a new translation from the given vector.
#[inline]
#[deprecated(note = "Use `::from` instead.")]
pub fn from_vector(vector: VectorN<N, D>) -> Translation<N, D> {
Translation { vector: vector }
}
/// Inverts `self`.
///
/// # Example
/// ```
/// # use nalgebra::{Translation2, Translation3};
/// let t = Translation3::new(1.0, 2.0, 3.0);
/// assert_eq!(t * t.inverse(), Translation3::identity());
/// assert_eq!(t.inverse() * t, Translation3::identity());
///
/// // Work in all dimensions.
/// let t = Translation2::new(1.0, 2.0);
/// assert_eq!(t * t.inverse(), Translation2::identity());
/// assert_eq!(t.inverse() * t, Translation2::identity());
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Translation<N, D>
where N: ClosedNeg {
Translation::from(-&self.vector)
}
/// Converts this translation into its equivalent homogeneous transformation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Translation2, Translation3, Matrix3, Matrix4};
/// let t = Translation3::new(10.0, 20.0, 30.0);
/// let expected = Matrix4::new(1.0, 0.0, 0.0, 10.0,
/// 0.0, 1.0, 0.0, 20.0,
/// 0.0, 0.0, 1.0, 30.0,
/// 0.0, 0.0, 0.0, 1.0);
/// assert_eq!(t.to_homogeneous(), expected);
///
/// let t = Translation2::new(10.0, 20.0);
/// let expected = Matrix3::new(1.0, 0.0, 10.0,
/// 0.0, 1.0, 20.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(t.to_homogeneous(), expected);
/// ```
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
where
N: Zero + One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
let mut res = MatrixN::<N, DimNameSum<D, U1>>::identity();
res.fixed_slice_mut::<D, U1>(0, D::dim())
.copy_from(&self.vector);
res
}
/// Inverts `self` in-place.
///
/// # Example
/// ```
/// # use nalgebra::{Translation2, Translation3};
/// let t = Translation3::new(1.0, 2.0, 3.0);
/// let mut inv_t = Translation3::new(1.0, 2.0, 3.0);
/// inv_t.inverse_mut();
/// assert_eq!(t * inv_t, Translation3::identity());
/// assert_eq!(inv_t * t, Translation3::identity());
///
/// // Work in all dimensions.
/// let t = Translation2::new(1.0, 2.0);
/// let mut inv_t = Translation2::new(1.0, 2.0);
/// inv_t.inverse_mut();
/// assert_eq!(t * inv_t, Translation2::identity());
/// assert_eq!(inv_t * t, Translation2::identity());
/// ```
#[inline]
pub fn inverse_mut(&mut self)
where N: ClosedNeg {
self.vector.neg_mut()
}
}
impl<N: Scalar + ClosedAdd, D: DimName> Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
/// Translate the given point.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
/// ```
/// # use nalgebra::{Translation3, Point3};
/// let t = Translation3::new(1.0, 2.0, 3.0);
/// let transformed_point = t.transform_point(&Point3::new(4.0, 5.0, 6.0));
/// assert_eq!(transformed_point, Point3::new(5.0, 7.0, 9.0));
#[inline]
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
pt + &self.vector
}
}
impl<N: Scalar + ClosedSub, D: DimName> Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
/// Translate the given point by the inverse of this translation.
///
/// # Example
/// ```
/// # use nalgebra::{Translation3, Point3};
/// let t = Translation3::new(1.0, 2.0, 3.0);
/// let transformed_point = t.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0));
/// assert_eq!(transformed_point, Point3::new(3.0, 3.0, 3.0));
#[inline]
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
pt - &self.vector
}
}
impl<N: Scalar + Eq, D: DimName> Eq for Translation<N, D> where DefaultAllocator: Allocator<N, D> {}
impl<N: Scalar + PartialEq, D: DimName> PartialEq for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
fn eq(&self, right: &Translation<N, D>) -> bool {
self.vector == right.vector
}
}
impl<N: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.vector.abs_diff_eq(&other.vector, epsilon)
}
}
impl<N: Scalar + RelativeEq, D: DimName> RelativeEq for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
{
self.vector
.relative_eq(&other.vector, epsilon, max_relative)
}
}
impl<N: Scalar + UlpsEq, D: DimName> UlpsEq for Translation<N, D>
where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.vector.ulps_eq(&other.vector, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N: RealField + fmt::Display, D: DimName> fmt::Display for Translation<N, D>
where DefaultAllocator: Allocator<N, D> + Allocator<usize, D>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
writeln!(f, "Translation {{")?;
write!(f, "{:.*}", precision, self.vector)?;
writeln!(f, "}}")
}
}