forked from M-Labs/nalgebra
229 lines
10 KiB
Rust
229 lines
10 KiB
Rust
use na::{DMatrix, Matrix3};
|
|
|
|
#[cfg(feature = "proptest-support")]
|
|
mod proptest_tests {
|
|
macro_rules! gen_tests(
|
|
($module: ident, $scalar: expr, $scalar_type: ty) => {
|
|
mod $module {
|
|
use na::DMatrix;
|
|
#[allow(unused_imports)]
|
|
use crate::core::helper::{RandScalar, RandComplex};
|
|
use std::cmp;
|
|
|
|
use crate::proptest::*;
|
|
use proptest::{prop_assert, proptest};
|
|
|
|
proptest! {
|
|
#[test]
|
|
fn symmetric_eigen(n in PROPTEST_MATRIX_DIM) {
|
|
let n = cmp::max(1, cmp::min(n, 10));
|
|
let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0).hermitian_part();
|
|
let eig = m.clone().symmetric_eigen();
|
|
let recomp = eig.recompose();
|
|
|
|
prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5))
|
|
}
|
|
|
|
#[test]
|
|
fn symmetric_eigen_singular(n in PROPTEST_MATRIX_DIM) {
|
|
let n = cmp::max(1, cmp::min(n, 10));
|
|
let mut m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0).hermitian_part();
|
|
m.row_mut(n / 2).fill(na::zero());
|
|
m.column_mut(n / 2).fill(na::zero());
|
|
let eig = m.clone().symmetric_eigen();
|
|
let recomp = eig.recompose();
|
|
|
|
prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5))
|
|
}
|
|
|
|
#[test]
|
|
fn symmetric_eigen_static_square_4x4(m in matrix4_($scalar)) {
|
|
let m = m.hermitian_part();
|
|
let eig = m.symmetric_eigen();
|
|
let recomp = eig.recompose();
|
|
|
|
prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5))
|
|
}
|
|
|
|
#[test]
|
|
fn symmetric_eigen_static_square_3x3(m in matrix3_($scalar)) {
|
|
let m = m.hermitian_part();
|
|
let eig = m.symmetric_eigen();
|
|
let recomp = eig.recompose();
|
|
|
|
prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5))
|
|
}
|
|
|
|
#[test]
|
|
fn symmetric_eigen_static_square_2x2(m in matrix2_($scalar)) {
|
|
let m = m.hermitian_part();
|
|
let eig = m.symmetric_eigen();
|
|
let recomp = eig.recompose();
|
|
|
|
prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
);
|
|
|
|
gen_tests!(complex, complex_f64(), RandComplex<f64>);
|
|
gen_tests!(f64, PROPTEST_F64, RandScalar<f64>);
|
|
}
|
|
|
|
// Test proposed on the issue #176 of rulinalg.
|
|
#[test]
|
|
#[rustfmt::skip]
|
|
fn symmetric_eigen_singular_24x24() {
|
|
let m = DMatrix::from_row_slice(
|
|
24,
|
|
24,
|
|
&[
|
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
-1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 1.0, 1.0,
|
|
0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
|
],
|
|
);
|
|
|
|
let eig = m.clone().symmetric_eigen();
|
|
let recomp = eig.recompose();
|
|
|
|
assert_relative_eq!(
|
|
m.lower_triangle(),
|
|
recomp.lower_triangle(),
|
|
epsilon = 1.0e-5
|
|
);
|
|
}
|
|
|
|
// Test for #1368
|
|
#[test]
|
|
fn very_small_deviation_from_identity() {
|
|
let m = Matrix3::<f32>::new(
|
|
1.0,
|
|
3.1575704e-23,
|
|
8.1146196e-23,
|
|
3.1575704e-23,
|
|
1.0,
|
|
1.7471054e-22,
|
|
8.1146196e-23,
|
|
1.7471054e-22,
|
|
1.0,
|
|
);
|
|
|
|
for v in m
|
|
.try_symmetric_eigen(f32::EPSILON, 0)
|
|
.unwrap()
|
|
.eigenvalues
|
|
.into_iter()
|
|
{
|
|
assert_relative_eq!(*v, 1.);
|
|
}
|
|
}
|
|
|
|
// #[cfg(feature = "arbitrary")]
|
|
// quickcheck! {
|
|
// TODO: full eigendecomposition is not implemented yet because of its complexity when some
|
|
// eigenvalues have multiplicity > 1.
|
|
//
|
|
// /*
|
|
// * NOTE: for the following tests, we use only upper-triangular matrices.
|
|
// * This ensures the schur decomposition will work, and allows use to test the eigenvector
|
|
// * computation.
|
|
// */
|
|
// fn eigen(n: usize) -> bool {
|
|
// let n = cmp::max(1, cmp::min(n, 10));
|
|
// let m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
|
//
|
|
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
// verify_eigenvectors(m, eig)
|
|
// }
|
|
//
|
|
// fn eigen_with_adjacent_duplicate_diagonals(n: usize) -> bool {
|
|
// let n = cmp::max(1, cmp::min(n, 10));
|
|
// let mut m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
|
//
|
|
// // Suplicate some adjacent diagonal elements.
|
|
// for i in 0 .. n / 2 {
|
|
// m[(i * 2 + 1, i * 2 + 1)] = m[(i * 2, i * 2)];
|
|
// }
|
|
//
|
|
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
// verify_eigenvectors(m, eig)
|
|
// }
|
|
//
|
|
// fn eigen_with_nonadjacent_duplicate_diagonals(n: usize) -> bool {
|
|
// let n = cmp::max(3, cmp::min(n, 10));
|
|
// let mut m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
|
//
|
|
// // Suplicate some diagonal elements.
|
|
// for i in n / 2 .. n {
|
|
// m[(i, i)] = m[(i - n / 2, i - n / 2)];
|
|
// }
|
|
//
|
|
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
// verify_eigenvectors(m, eig)
|
|
// }
|
|
//
|
|
// fn eigen_static_square_4x4(m: Matrix4<f64>) -> bool {
|
|
// let m = m.upper_triangle();
|
|
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
// verify_eigenvectors(m, eig)
|
|
// }
|
|
//
|
|
// fn eigen_static_square_3x3(m: Matrix3<f64>) -> bool {
|
|
// let m = m.upper_triangle();
|
|
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
// verify_eigenvectors(m, eig)
|
|
// }
|
|
//
|
|
// fn eigen_static_square_2x2(m: Matrix2<f64>) -> bool {
|
|
// let m = m.upper_triangle();
|
|
// println!("{}", m);
|
|
// let eig = RealEigen::new(m.clone()).unwrap();
|
|
// verify_eigenvectors(m, eig)
|
|
// }
|
|
// }
|
|
//
|
|
// fn verify_eigenvectors<D: Dim>(m: OMatrix<f64, D>, mut eig: RealEigen<f64, D>) -> bool
|
|
// where DefaultAllocator: Allocator<f64, D, D> +
|
|
// Allocator<f64, D> +
|
|
// Allocator<usize, D, D> +
|
|
// Allocator<usize, D>,
|
|
// OMatrix<f64, D>: Display,
|
|
// OVector<f64, D>: Display {
|
|
// let mv = &m * &eig.eigenvectors;
|
|
//
|
|
// println!("eigenvalues: {}eigenvectors: {}", eig.eigenvalues, eig.eigenvectors);
|
|
//
|
|
// let dim = m.nrows();
|
|
// for i in 0 .. dim {
|
|
// let mut col = eig.eigenvectors.column_mut(i);
|
|
// col *= eig.eigenvalues[i];
|
|
// }
|
|
//
|
|
// println!("{}{:.5}{:.5}", m, mv, eig.eigenvectors);
|
|
//
|
|
// relative_eq!(eig.eigenvectors, mv, epsilon = 1.0e-5)
|
|
// }
|