nalgebra/tests/geometry/dual_quaternion.rs
Terence dfb7b6af22 Don't panic ScLERPing UnitDualQuaternion with equal rotation
Solves #1013.

Previously, when screw-linearly interpolating two unit dual quaternions
that had an identical orientation, `try_sclerp` would return `None`, as
the operation would introduce a division-by-zero.

This PR splits out the cases where two unit dual quaternions have an
identical orientation from the cases where they have opposite
orientations. In the case where they have identical orientations, the
operation is well-defined, but the exponential parameterization could
not handle it without introducing NaNs. Therefore, the function detects
this case and simply defaults to linearly interpolating the
translational components and using one of the two inputs' rotation
components.

The case where the inputs have opposite rotations is now detected
separately using the dot product of the real (rotation) parts, which was
already being computed anyway.

Also introduces proptests for these specific scenarios, to avoid any
regression.
2021-10-28 00:02:20 -04:00

303 lines
11 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![cfg(feature = "proptest-support")]
#![allow(non_snake_case)]
use na::{DualQuaternion, Point3, Unit, UnitDualQuaternion, UnitQuaternion, Vector3};
use crate::proptest::*;
use proptest::{prop_assert, proptest};
proptest!(
#[test]
fn isometry_equivalence(iso in isometry3(), p in point3(), v in vector3()) {
let dq = UnitDualQuaternion::from_isometry(&iso);
prop_assert!(relative_eq!(iso * p, dq * p, epsilon = 1.0e-7));
prop_assert!(relative_eq!(iso * v, dq * v, epsilon = 1.0e-7));
}
#[test]
fn inverse_is_identity(i in unit_dual_quaternion(), p in point3(), v in vector3()) {
let ii = i.inverse();
prop_assert!(relative_eq!(i * ii, UnitDualQuaternion::identity(), epsilon = 1.0e-7)
&& relative_eq!(ii * i, UnitDualQuaternion::identity(), epsilon = 1.0e-7)
&& relative_eq!((i * ii) * p, p, epsilon = 1.0e-7)
&& relative_eq!((ii * i) * p, p, epsilon = 1.0e-7)
&& relative_eq!((i * ii) * v, v, epsilon = 1.0e-7)
&& relative_eq!((ii * i) * v, v, epsilon = 1.0e-7));
}
#[cfg_attr(rustfmt, rustfmt_skip)]
#[test]
fn multiply_equals_alga_transform(
dq in unit_dual_quaternion(),
v in vector3(),
p in point3()
) {
prop_assert!(dq * v == dq.transform_vector(&v)
&& dq * p == dq.transform_point(&p)
&& relative_eq!(
dq.inverse() * v,
dq.inverse_transform_vector(&v),
epsilon = 1.0e-7
)
&& relative_eq!(
dq.inverse() * p,
dq.inverse_transform_point(&p),
epsilon = 1.0e-7
));
}
#[cfg_attr(rustfmt, rustfmt_skip)]
#[test]
fn composition(
dq in unit_dual_quaternion(),
uq in unit_quaternion(),
t in translation3(),
v in vector3(),
p in point3()
) {
// (rotation × dual quaternion) * point = rotation × (dual quaternion * point)
prop_assert!(relative_eq!((uq * dq) * v, uq * (dq * v), epsilon = 1.0e-7));
prop_assert!(relative_eq!((uq * dq) * p, uq * (dq * p), epsilon = 1.0e-7));
// (dual quaternion × rotation) * point = dual quaternion × (rotation * point)
prop_assert!(relative_eq!((dq * uq) * v, dq * (uq * v), epsilon = 1.0e-7));
prop_assert!(relative_eq!((dq * uq) * p, dq * (uq * p), epsilon = 1.0e-7));
// (translation × dual quaternion) * point = translation × (dual quaternion * point)
prop_assert!(relative_eq!((t * dq) * v, (dq * v), epsilon = 1.0e-7));
prop_assert!(relative_eq!((t * dq) * p, t * (dq * p), epsilon = 1.0e-7));
// (dual quaternion × translation) * point = dual quaternion × (translation * point)
prop_assert!(relative_eq!((dq * t) * v, dq * v, epsilon = 1.0e-7));
prop_assert!(relative_eq!((dq * t) * p, dq * (t * p), epsilon = 1.0e-7));
}
#[cfg_attr(rustfmt, rustfmt_skip)]
#[test]
fn sclerp_is_defined_for_identical_orientations(
dq in unit_dual_quaternion(),
s in -1.0f64..2.0f64,
t in translation3(),
) {
// Should not panic.
prop_assert!(relative_eq!(dq.sclerp(&dq, 0.0), dq, epsilon = 1.0e-7));
prop_assert!(relative_eq!(dq.sclerp(&dq, 0.5), dq, epsilon = 1.0e-7));
prop_assert!(relative_eq!(dq.sclerp(&dq, 1.0), dq, epsilon = 1.0e-7));
prop_assert!(relative_eq!(dq.sclerp(&dq, s), dq, epsilon = 1.0e-7));
let unit = UnitDualQuaternion::identity();
prop_assert!(relative_eq!(unit.sclerp(&unit, 0.0), unit, epsilon = 1.0e-7));
prop_assert!(relative_eq!(unit.sclerp(&unit, 0.5), unit, epsilon = 1.0e-7));
prop_assert!(relative_eq!(unit.sclerp(&unit, 1.0), unit, epsilon = 1.0e-7));
prop_assert!(relative_eq!(unit.sclerp(&unit, s), unit, epsilon = 1.0e-7));
// ScLERPing two unit dual quaternions with nearly equal rotation
// components should result in a unit dual quaternion with a rotation
// component nearly equal to either input.
let dq2 = t * dq;
prop_assert!(relative_eq!(dq.sclerp(&dq2, 0.0).real, dq.real, epsilon = 1.0e-7));
prop_assert!(relative_eq!(dq.sclerp(&dq2, 0.5).real, dq.real, epsilon = 1.0e-7));
prop_assert!(relative_eq!(dq.sclerp(&dq2, 1.0).real, dq.real, epsilon = 1.0e-7));
prop_assert!(relative_eq!(dq.sclerp(&dq2, s).real, dq.real, epsilon = 1.0e-7));
// ScLERPing two unit dual quaternions with nearly equal rotation
// components should result in a unit dual quaternion with a translation
// component which is nearly equal to linearly interpolating the
// translation components of the inputs.
prop_assert!(relative_eq!(
dq.sclerp(&dq2, s).translation().vector,
dq.translation().vector.lerp(&dq2.translation().vector, s),
epsilon = 1.0e-7
));
let unit2 = t * unit;
prop_assert!(relative_eq!(unit.sclerp(&unit2, 0.0).real, unit.real, epsilon = 1.0e-7));
prop_assert!(relative_eq!(unit.sclerp(&unit2, 0.5).real, unit.real, epsilon = 1.0e-7));
prop_assert!(relative_eq!(unit.sclerp(&unit2, 1.0).real, unit.real, epsilon = 1.0e-7));
prop_assert!(relative_eq!(unit.sclerp(&unit2, s).real, unit.real, epsilon = 1.0e-7));
prop_assert!(relative_eq!(
unit.sclerp(&unit2, s).translation().vector,
unit.translation().vector.lerp(&unit2.translation().vector, s),
epsilon = 1.0e-7
));
}
#[cfg_attr(rustfmt, rustfmt_skip)]
#[test]
fn sclerp_is_not_defined_for_opposite_orientations(
dq in unit_dual_quaternion(),
s in 0.1f64..0.9f64,
t in translation3(),
t2 in translation3(),
v in vector3(),
) {
let iso = dq.to_isometry();
let rot = iso.rotation;
if let Some((axis, angle)) = rot.axis_angle() {
let flipped = UnitQuaternion::from_axis_angle(&axis, angle + std::f64::consts::PI);
let dqf = flipped * rot.inverse() * dq.clone();
prop_assert!(dq.try_sclerp(&dqf, 0.5, 1.0e-7).is_none());
prop_assert!(dq.try_sclerp(&dqf, s, 1.0e-7).is_none());
}
let dq2 = t * dq;
let iso2 = dq2.to_isometry();
let rot2 = iso2.rotation;
if let Some((axis, angle)) = rot2.axis_angle() {
let flipped = UnitQuaternion::from_axis_angle(&axis, angle + std::f64::consts::PI);
let dq3f = t2 * flipped * rot.inverse() * dq.clone();
prop_assert!(dq2.try_sclerp(&dq3f, 0.5, 1.0e-7).is_none());
prop_assert!(dq2.try_sclerp(&dq3f, s, 1.0e-7).is_none());
}
if let Some(axis) = Unit::try_new(v, 1.0e-7) {
let unit = UnitDualQuaternion::identity();
let flip = UnitQuaternion::from_axis_angle(&axis, std::f64::consts::PI);
let unitf = flip * unit;
prop_assert!(unit.try_sclerp(&unitf, 0.5, 1.0e-7).is_none());
prop_assert!(unit.try_sclerp(&unitf, s, 1.0e-7).is_none());
let unit2f = t * unit * flip;
prop_assert!(unit.try_sclerp(&unit2f, 0.5, 1.0e-7).is_none());
prop_assert!(unit.try_sclerp(&unit2f, s, 1.0e-7).is_none());
}
}
#[cfg_attr(rustfmt, rustfmt_skip)]
#[test]
fn all_op_exist(
dq in dual_quaternion(),
udq in unit_dual_quaternion(),
uq in unit_quaternion(),
s in PROPTEST_F64,
t in translation3(),
v in vector3(),
p in point3()
) {
let dqMs: DualQuaternion<_> = dq * s;
let dqMdq: DualQuaternion<_> = dq * dq;
let dqMudq: DualQuaternion<_> = dq * udq;
let udqMdq: DualQuaternion<_> = udq * dq;
let iMi: UnitDualQuaternion<_> = udq * udq;
let iMuq: UnitDualQuaternion<_> = udq * uq;
let iDi: UnitDualQuaternion<_> = udq / udq;
let iDuq: UnitDualQuaternion<_> = udq / uq;
let iMp: Point3<_> = udq * p;
let iMv: Vector3<_> = udq * v;
let iMt: UnitDualQuaternion<_> = udq * t;
let tMi: UnitDualQuaternion<_> = t * udq;
let uqMi: UnitDualQuaternion<_> = uq * udq;
let uqDi: UnitDualQuaternion<_> = uq / udq;
let mut dqMs1 = dq;
let mut dqMdq1 = dq;
let mut dqMdq2 = dq;
let mut dqMudq1 = dq;
let mut dqMudq2 = dq;
let mut iMt1 = udq;
let mut iMt2 = udq;
let mut iMi1 = udq;
let mut iMi2 = udq;
let mut iMuq1 = udq;
let mut iMuq2 = udq;
let mut iDi1 = udq;
let mut iDi2 = udq;
let mut iDuq1 = udq;
let mut iDuq2 = udq;
dqMs1 *= s;
dqMdq1 *= dq;
dqMdq2 *= &dq;
dqMudq1 *= udq;
dqMudq2 *= &udq;
iMt1 *= t;
iMt2 *= &t;
iMi1 *= udq;
iMi2 *= &udq;
iMuq1 *= uq;
iMuq2 *= &uq;
iDi1 /= udq;
iDi2 /= &udq;
iDuq1 /= uq;
iDuq2 /= &uq;
prop_assert!(dqMs == dqMs1
&& dqMdq == dqMdq1
&& dqMdq == dqMdq2
&& dqMudq == dqMudq1
&& dqMudq == dqMudq2
&& iMt == iMt1
&& iMt == iMt2
&& iMi == iMi1
&& iMi == iMi2
&& iMuq == iMuq1
&& iMuq == iMuq2
&& iDi == iDi1
&& iDi == iDi2
&& iDuq == iDuq1
&& iDuq == iDuq2
&& dqMs == &dq * s
&& dqMdq == &dq * &dq
&& dqMdq == dq * &dq
&& dqMdq == &dq * dq
&& dqMudq == &dq * &udq
&& dqMudq == dq * &udq
&& dqMudq == &dq * udq
&& udqMdq == &udq * &dq
&& udqMdq == udq * &dq
&& udqMdq == &udq * dq
&& iMi == &udq * &udq
&& iMi == udq * &udq
&& iMi == &udq * udq
&& iMuq == &udq * &uq
&& iMuq == udq * &uq
&& iMuq == &udq * uq
&& iDi == &udq / &udq
&& iDi == udq / &udq
&& iDi == &udq / udq
&& iDuq == &udq / &uq
&& iDuq == udq / &uq
&& iDuq == &udq / uq
&& iMp == &udq * &p
&& iMp == udq * &p
&& iMp == &udq * p
&& iMv == &udq * &v
&& iMv == udq * &v
&& iMv == &udq * v
&& iMt == &udq * &t
&& iMt == udq * &t
&& iMt == &udq * t
&& tMi == &t * &udq
&& tMi == t * &udq
&& tMi == &t * udq
&& uqMi == &uq * &udq
&& uqMi == uq * &udq
&& uqMi == &uq * udq
&& uqDi == &uq / &udq
&& uqDi == uq / &udq
&& uqDi == &uq / udq)
}
);