use crate::{Isometry2, Isometry3, IsometryMatrix2, IsometryMatrix3, RealField, SimdRealField}; /// # Interpolation impl Isometry3 { /// Interpolates between two isometries using a linear interpolation for the translation part, /// and a spherical interpolation for the rotation part. /// /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation /// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic. /// /// # Examples: /// /// ``` /// # use nalgebra::{Vector3, Translation3, Isometry3, UnitQuaternion}; /// /// let t1 = Translation3::new(1.0, 2.0, 3.0); /// let t2 = Translation3::new(4.0, 8.0, 12.0); /// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); /// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); /// let iso1 = Isometry3::from_parts(t1, q1); /// let iso2 = Isometry3::from_parts(t2, q2); /// /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); /// /// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0)); /// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0)); /// ``` #[inline] #[must_use] pub fn lerp_slerp(&self, other: &Self, t: T) -> Self where T: RealField, { let tr = self .translation .vector .lerp(&other.translation.vector, t.clone()); let rot = self.rotation.slerp(&other.rotation, t); Self::from_parts(tr.into(), rot) } /// Attempts to interpolate between two isometries using a linear interpolation for the translation part, /// and a spherical interpolation for the rotation part. /// /// Returns `None` if the angle between both rotations is 180 degrees (in which case the interpolation /// is not well-defined). /// /// # Examples: /// /// ``` /// # use nalgebra::{Vector3, Translation3, Isometry3, UnitQuaternion}; /// /// let t1 = Translation3::new(1.0, 2.0, 3.0); /// let t2 = Translation3::new(4.0, 8.0, 12.0); /// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); /// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); /// let iso1 = Isometry3::from_parts(t1, q1); /// let iso2 = Isometry3::from_parts(t2, q2); /// /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); /// /// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0)); /// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0)); /// ``` #[inline] #[must_use] pub fn try_lerp_slerp(&self, other: &Self, t: T, epsilon: T) -> Option where T: RealField, { let tr = self .translation .vector .lerp(&other.translation.vector, t.clone()); let rot = self.rotation.try_slerp(&other.rotation, t, epsilon)?; Some(Self::from_parts(tr.into(), rot)) } } impl IsometryMatrix3 { /// Interpolates between two isometries using a linear interpolation for the translation part, /// and a spherical interpolation for the rotation part. /// /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation /// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic. /// /// # Examples: /// /// ``` /// # use nalgebra::{Vector3, Translation3, Rotation3, IsometryMatrix3}; /// /// let t1 = Translation3::new(1.0, 2.0, 3.0); /// let t2 = Translation3::new(4.0, 8.0, 12.0); /// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); /// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); /// let iso1 = IsometryMatrix3::from_parts(t1, q1); /// let iso2 = IsometryMatrix3::from_parts(t2, q2); /// /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); /// /// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0)); /// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0)); /// ``` #[inline] #[must_use] pub fn lerp_slerp(&self, other: &Self, t: T) -> Self where T: RealField, { let tr = self .translation .vector .lerp(&other.translation.vector, t.clone()); let rot = self.rotation.slerp(&other.rotation, t); Self::from_parts(tr.into(), rot) } /// Attempts to interpolate between two isometries using a linear interpolation for the translation part, /// and a spherical interpolation for the rotation part. /// /// Returns `None` if the angle between both rotations is 180 degrees (in which case the interpolation /// is not well-defined). /// /// # Examples: /// /// ``` /// # use nalgebra::{Vector3, Translation3, Rotation3, IsometryMatrix3}; /// /// let t1 = Translation3::new(1.0, 2.0, 3.0); /// let t2 = Translation3::new(4.0, 8.0, 12.0); /// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); /// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); /// let iso1 = IsometryMatrix3::from_parts(t1, q1); /// let iso2 = IsometryMatrix3::from_parts(t2, q2); /// /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); /// /// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0)); /// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0)); /// ``` #[inline] #[must_use] pub fn try_lerp_slerp(&self, other: &Self, t: T, epsilon: T) -> Option where T: RealField, { let tr = self .translation .vector .lerp(&other.translation.vector, t.clone()); let rot = self.rotation.try_slerp(&other.rotation, t, epsilon)?; Some(Self::from_parts(tr.into(), rot)) } } impl Isometry2 { /// Interpolates between two isometries using a linear interpolation for the translation part, /// and a spherical interpolation for the rotation part. /// /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation /// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic. /// /// # Examples: /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector2, Translation2, UnitComplex, Isometry2}; /// /// let t1 = Translation2::new(1.0, 2.0); /// let t2 = Translation2::new(4.0, 8.0); /// let q1 = UnitComplex::new(std::f32::consts::FRAC_PI_4); /// let q2 = UnitComplex::new(-std::f32::consts::PI); /// let iso1 = Isometry2::from_parts(t1, q1); /// let iso2 = Isometry2::from_parts(t2, q2); /// /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); /// /// assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0)); /// assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2); /// ``` #[inline] #[must_use] pub fn lerp_slerp(&self, other: &Self, t: T) -> Self where T: RealField, { let tr = self .translation .vector .lerp(&other.translation.vector, t.clone()); let rot = self.rotation.slerp(&other.rotation, t); Self::from_parts(tr.into(), rot) } } impl IsometryMatrix2 { /// Interpolates between two isometries using a linear interpolation for the translation part, /// and a spherical interpolation for the rotation part. /// /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation /// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic. /// /// # Examples: /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector2, Translation2, Rotation2, IsometryMatrix2}; /// /// let t1 = Translation2::new(1.0, 2.0); /// let t2 = Translation2::new(4.0, 8.0); /// let q1 = Rotation2::new(std::f32::consts::FRAC_PI_4); /// let q2 = Rotation2::new(-std::f32::consts::PI); /// let iso1 = IsometryMatrix2::from_parts(t1, q1); /// let iso2 = IsometryMatrix2::from_parts(t2, q2); /// /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); /// /// assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0)); /// assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2); /// ``` #[inline] #[must_use] pub fn lerp_slerp(&self, other: &Self, t: T) -> Self where T: RealField, { let tr = self .translation .vector .lerp(&other.translation.vector, t.clone()); let rot = self.rotation.slerp(&other.rotation, t); Self::from_parts(tr.into(), rot) } }