//! Tests for proptest-related functionality. use nalgebra::base::dimension::*; use nalgebra::proptest::{matrix, DimRange, MatrixStrategy}; use nalgebra::{DMatrix, DVector, Dim, Matrix3, MatrixMN, Vector3}; use proptest::prelude::*; use proptest::strategy::ValueTree; use proptest::test_runner::TestRunner; #[cfg(feature = "slow-tests")] use { itertools::Itertools, std::iter::repeat, std::collections::HashSet, }; /// Generate a proptest that tests that all matrices generated with the /// provided rows and columns conform to the constraints defined by the /// input. macro_rules! generate_matrix_sanity_test { ($test_name:ident, $rows:expr, $cols:expr) => { proptest! { #[test] fn $test_name(a in matrix(-5 ..= 5i32, $rows, $cols)) { // let a: MatrixMN<_, $rows, $cols> = a; let rows_range = DimRange::from($rows); let cols_range = DimRange::from($cols); prop_assert!(a.nrows() >= rows_range.lower_bound().value() && a.nrows() <= rows_range.upper_bound().value()); prop_assert!(a.ncols() >= cols_range.lower_bound().value() && a.ncols() <= cols_range.upper_bound().value()); prop_assert!(a.iter().all(|x_ij| *x_ij >= -5 && *x_ij <= 5)); } } }; } // Test all fixed-size matrices with row/col dimensions up to 3 generate_matrix_sanity_test!(test_matrix_u0_u0, U0, U0); generate_matrix_sanity_test!(test_matrix_u1_u0, U1, U0); generate_matrix_sanity_test!(test_matrix_u0_u1, U0, U1); generate_matrix_sanity_test!(test_matrix_u1_u1, U1, U1); generate_matrix_sanity_test!(test_matrix_u2_u1, U2, U1); generate_matrix_sanity_test!(test_matrix_u1_u2, U1, U2); generate_matrix_sanity_test!(test_matrix_u2_u2, U2, U2); generate_matrix_sanity_test!(test_matrix_u3_u2, U3, U2); generate_matrix_sanity_test!(test_matrix_u2_u3, U2, U3); generate_matrix_sanity_test!(test_matrix_u3_u3, U3, U3); // Similarly test all heap-allocated but fixed dim ranges generate_matrix_sanity_test!(test_matrix_0_0, 0, 0); generate_matrix_sanity_test!(test_matrix_0_1, 0, 1); generate_matrix_sanity_test!(test_matrix_1_0, 1, 0); generate_matrix_sanity_test!(test_matrix_1_1, 1, 1); generate_matrix_sanity_test!(test_matrix_2_1, 2, 1); generate_matrix_sanity_test!(test_matrix_1_2, 1, 2); generate_matrix_sanity_test!(test_matrix_2_2, 2, 2); generate_matrix_sanity_test!(test_matrix_3_2, 3, 2); generate_matrix_sanity_test!(test_matrix_2_3, 2, 3); generate_matrix_sanity_test!(test_matrix_3_3, 3, 3); // Test arbitrary inputs generate_matrix_sanity_test!(test_matrix_input_1, U5, 1..=5); generate_matrix_sanity_test!(test_matrix_input_2, 3..=4, 1..=5); generate_matrix_sanity_test!(test_matrix_input_3, 1..=2, U3); generate_matrix_sanity_test!(test_matrix_input_4, 3, U4); #[test] fn test_matrix_output_types() { // Test that the dimension types are correct for the given inputs let _: MatrixStrategy<_, U3, U4> = matrix(-5..5, U3, U4); let _: MatrixStrategy<_, U3, U3> = matrix(-5..5, U3, U3); let _: MatrixStrategy<_, U3, Dynamic> = matrix(-5..5, U3, 1..=5); let _: MatrixStrategy<_, Dynamic, U3> = matrix(-5..5, 1..=5, U3); let _: MatrixStrategy<_, Dynamic, Dynamic> = matrix(-5..5, 1..=5, 1..=5); } // Below we have some tests to ensure that specific instances of MatrixMN are usable // in a typical proptest scenario where we (implicitly) use the `Arbitrary` trait proptest! { #[test] fn ensure_arbitrary_test_compiles_matrix3(_: Matrix3) {} #[test] fn ensure_arbitrary_test_compiles_matrixmn_u3_dynamic(_: MatrixMN) {} #[test] fn ensure_arbitrary_test_compiles_matrixmn_dynamic_u3(_: MatrixMN) {} #[test] fn ensure_arbitrary_test_compiles_dmatrix(_: DMatrix) {} #[test] fn ensure_arbitrary_test_compiles_vector3(_: Vector3) {} #[test] fn ensure_arbitrary_test_compiles_dvector(_: DVector) {} } #[cfg(feature = "slow-tests")] #[test] fn matrix_samples_all_possible_outputs() { // Test that the proptest generation covers all possible outputs for a small space of inputs // given enough samples. // We use a deterministic test runner to make the test "stable". let mut runner = TestRunner::deterministic(); // This number needs to be high enough so that we with high probability sample // all possible cases let num_generated_matrices = 200000; let values = -1..=1; let rows = 0..=2; let cols = 0..=3; let strategy = matrix(values.clone(), rows.clone(), cols.clone()); // Enumerate all possible combinations let mut all_combinations = HashSet::new(); for nrows in rows { for ncols in cols.clone() { // For the given number of rows and columns let n_values = nrows * ncols; if n_values == 0 { // If we have zero rows or columns, the set of matrices with the given // rows and columns is a single element: an empty matrix all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &[])); } else { // Otherwise, we need to sample all possible matrices. // To do this, we generate the values as the (multi) Cartesian product // of the value sets. For example, for a 2x2 matrices, we consider // all possible 4-element arrays that the matrices can take by // considering all elements in the cartesian product // V x V x V x V // where V is the set of eligible values, e.g. V := -1 ..= 1 for matrix_values in repeat(values.clone()).take(n_values).multi_cartesian_product() { all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &matrix_values)); } } } } let mut visited_combinations = HashSet::new(); for _ in 0..num_generated_matrices { let tree = strategy .new_tree(&mut runner) .expect("Tree generation should not fail"); let matrix = tree.current(); visited_combinations.insert(matrix.clone()); } assert_eq!(visited_combinations, all_combinations, "Did not sample all possible values."); } #[test] fn matrix_shrinking_satisfies_constraints() { // We use a deterministic test runner to make the test "stable". let mut runner = TestRunner::deterministic(); let strategy = matrix(-1..=2, 1..=3, 2..=4); let num_matrices = 25; macro_rules! maybeprintln { ($($arg:tt)*) => { // Uncomment the below line to enable printing of matrix sequences. This is handy // for manually inspecting the sequences of simplified matrices. // println!($($arg)*) }; } maybeprintln!("========================== (begin generation process)"); for _ in 0..num_matrices { let mut tree = strategy .new_tree(&mut runner) .expect("Tree generation should not fail."); let mut current = Some(tree.current()); maybeprintln!("------------------"); while let Some(matrix) = current { maybeprintln!("{}", matrix); assert!( matrix.iter().all(|&v| v >= -1 && v <= 2), "All matrix elements must satisfy constraints" ); assert!( matrix.nrows() >= 1 && matrix.nrows() <= 3, "Number of rows in matrix must satisfy constraints." ); assert!( matrix.ncols() >= 2 && matrix.ncols() <= 4, "Number of columns in matrix must satisfy constraints." ); current = if tree.simplify() { Some(tree.current()) } else { None } } } maybeprintln!("========================== (end of generation process)"); }