use num::{One, Zero}; use std::ops::{Div, DivAssign, Mul, MulAssign}; use simba::scalar::{ClosedAdd, ClosedMul, RealField}; use crate::base::allocator::Allocator; use crate::base::dimension::{DimName, U1, U3, U4}; use crate::base::{DefaultAllocator, Unit, VectorN}; use crate::Scalar; use crate::geometry::{AbstractRotation, Isometry, Point, Rotation, Translation, UnitQuaternion}; // FIXME: there are several cloning of rotations that we could probably get rid of (but we didn't // yet because that would require to add a bound like `where for<'a, 'b> &'a R: Mul<&'b R, Output = R>` // which is quite ugly. /* * * In this file, we provide: * ========================= * * * (Operators) * * Isometry × Isometry * Isometry × R * * * Isometry ÷ Isometry * Isometry ÷ R * * Isometry × Point * Isometry × Vector * Isometry × Unit * * * Isometry × Translation * Translation × Isometry * Translation × R -> Isometry * * NOTE: The following are provided explicitly because we can't have R × Isometry. * Rotation × Isometry * UnitQuaternion × Isometry * * Rotation ÷ Isometry * UnitQuaternion ÷ Isometry * * Rotation × Translation -> Isometry * UnitQuaternion × Translation -> Isometry * * * (Assignment Operators) * * Isometry ×= Translation * * Isometry ×= Isometry * Isometry ×= R * * Isometry ÷= Isometry * Isometry ÷= R * */ macro_rules! isometry_binop_impl( ($Op: ident, $op: ident; $lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty; $action: expr; $($lives: tt),*) => { impl<$($lives ,)* N: RealField, D: DimName, R> $Op<$Rhs> for $Lhs where R: AbstractRotation, DefaultAllocator: Allocator { type Output = $Output; #[inline] fn $op($lhs, $rhs: $Rhs) -> Self::Output { $action } } } ); macro_rules! isometry_binop_impl_all( ($Op: ident, $op: ident; $lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty; [val val] => $action_val_val: expr; [ref val] => $action_ref_val: expr; [val ref] => $action_val_ref: expr; [ref ref] => $action_ref_ref: expr;) => { isometry_binop_impl!( $Op, $op; $lhs: $Lhs, $rhs: $Rhs, Output = $Output; $action_val_val; ); isometry_binop_impl!( $Op, $op; $lhs: &'a $Lhs, $rhs: $Rhs, Output = $Output; $action_ref_val; 'a); isometry_binop_impl!( $Op, $op; $lhs: $Lhs, $rhs: &'b $Rhs, Output = $Output; $action_val_ref; 'b); isometry_binop_impl!( $Op, $op; $lhs: &'a $Lhs, $rhs: &'b $Rhs, Output = $Output; $action_ref_ref; 'a, 'b); } ); macro_rules! isometry_binop_assign_impl_all( ($OpAssign: ident, $op_assign: ident; $lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty; [val] => $action_val: expr; [ref] => $action_ref: expr;) => { impl $OpAssign<$Rhs> for $Lhs where R: AbstractRotation, DefaultAllocator: Allocator { #[inline] fn $op_assign(&mut $lhs, $rhs: $Rhs) { $action_val } } impl<'b, N: RealField, D: DimName, R> $OpAssign<&'b $Rhs> for $Lhs where R: AbstractRotation, DefaultAllocator: Allocator { #[inline] fn $op_assign(&mut $lhs, $rhs: &'b $Rhs) { $action_ref } } } ); // Isometry × Isometry // Isometry ÷ Isometry isometry_binop_impl_all!( Mul, mul; self: Isometry, rhs: Isometry, Output = Isometry; [val val] => &self * &rhs; [ref val] => self * &rhs; [val ref] => &self * rhs; [ref ref] => { let shift = self.rotation.transform_vector(&rhs.translation.vector); Isometry::from_parts(Translation::from(&self.translation.vector + shift), self.rotation.clone() * rhs.rotation.clone()) // FIXME: too bad we have to clone. }; ); isometry_binop_impl_all!( Div, div; self: Isometry, rhs: Isometry, Output = Isometry; [val val] => self * rhs.inverse(); [ref val] => self * rhs.inverse(); [val ref] => self * rhs.inverse(); [ref ref] => self * rhs.inverse(); ); // Isometry ×= Translation isometry_binop_assign_impl_all!( MulAssign, mul_assign; self: Isometry, rhs: Translation; [val] => *self *= &rhs; [ref] => { let shift = self.rotation.transform_vector(&rhs.vector); self.translation.vector += shift; }; ); // Isometry ×= Isometry // Isometry ÷= Isometry isometry_binop_assign_impl_all!( MulAssign, mul_assign; self: Isometry, rhs: Isometry; [val] => *self *= &rhs; [ref] => { let shift = self.rotation.transform_vector(&rhs.translation.vector); self.translation.vector += shift; self.rotation *= rhs.rotation.clone(); }; ); isometry_binop_assign_impl_all!( DivAssign, div_assign; self: Isometry, rhs: Isometry; [val] => *self /= &rhs; [ref] => *self *= rhs.inverse(); ); // Isometry ×= R // Isometry ÷= R md_assign_impl_all!( MulAssign, mul_assign where N: RealField; (D, U1), (D, D) for D: DimName; self: Isometry>, rhs: Rotation; [val] => self.rotation *= rhs; [ref] => self.rotation *= rhs.clone(); ); md_assign_impl_all!( DivAssign, div_assign where N: RealField; (D, U1), (D, D) for D: DimName; self: Isometry>, rhs: Rotation; // FIXME: don't invert explicitly? [val] => *self *= rhs.inverse(); [ref] => *self *= rhs.inverse(); ); md_assign_impl_all!( MulAssign, mul_assign where N: RealField; (U3, U3), (U3, U3) for; self: Isometry>, rhs: UnitQuaternion; [val] => self.rotation *= rhs; [ref] => self.rotation *= rhs.clone(); ); md_assign_impl_all!( DivAssign, div_assign where N: RealField; (U3, U3), (U3, U3) for; self: Isometry>, rhs: UnitQuaternion; // FIXME: don't invert explicitly? [val] => *self *= rhs.inverse(); [ref] => *self *= rhs.inverse(); ); // Isometry × Point isometry_binop_impl_all!( Mul, mul; self: Isometry, right: Point, Output = Point; [val val] => self.translation * self.rotation.transform_point(&right); [ref val] => &self.translation * self.rotation.transform_point(&right); [val ref] => self.translation * self.rotation.transform_point(right); [ref ref] => &self.translation * self.rotation.transform_point(right); ); // Isometry × Vector isometry_binop_impl_all!( Mul, mul; // FIXME: because of `transform_vector`, we cant use a generic storage type for the rhs vector, // i.e., right: Vector where S: Storage. self: Isometry, right: VectorN, Output = VectorN; [val val] => self.rotation.transform_vector(&right); [ref val] => self.rotation.transform_vector(&right); [val ref] => self.rotation.transform_vector(right); [ref ref] => self.rotation.transform_vector(right); ); // Isometry × Unit isometry_binop_impl_all!( Mul, mul; // FIXME: because of `transform_vector`, we cant use a generic storage type for the rhs vector, // i.e., right: Vector where S: Storage. self: Isometry, right: Unit>, Output = Unit>; [val val] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref())); [ref val] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref())); [val ref] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref())); [ref ref] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref())); ); // Isometry × Translation isometry_binop_impl_all!( Mul, mul; self: Isometry, right: Translation, Output = Isometry; [val val] => &self * &right; [ref val] => self * &right; [val ref] => &self * right; [ref ref] => { let new_tr = &self.translation.vector + self.rotation.transform_vector(&right.vector); Isometry::from_parts(Translation::from(new_tr), self.rotation.clone()) }; ); // Translation × Isometry isometry_binop_impl_all!( Mul, mul; self: Translation, right: Isometry, Output = Isometry; [val val] => Isometry::from_parts(self * right.translation, right.rotation); [ref val] => Isometry::from_parts(self * &right.translation, right.rotation); [val ref] => Isometry::from_parts(self * &right.translation, right.rotation.clone()); [ref ref] => Isometry::from_parts(self * &right.translation, right.rotation.clone()); ); macro_rules! isometry_from_composition_impl( ($Op: ident, $op: ident; ($R1: ty, $C1: ty),($R2: ty, $C2: ty) $(for $Dims: ident: $DimsBound: ident),*; $lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty; $action: expr; $($lives: tt),*) => { impl<$($lives ,)* N: RealField $(, $Dims: $DimsBound)*> $Op<$Rhs> for $Lhs where DefaultAllocator: Allocator + Allocator { type Output = $Output; #[inline] fn $op($lhs, $rhs: $Rhs) -> Self::Output { $action } } } ); macro_rules! isometry_from_composition_impl_all( ($Op: ident, $op: ident; ($R1: ty, $C1: ty),($R2: ty, $C2: ty) $(for $Dims: ident: $DimsBound: ident),*; $lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty; [val val] => $action_val_val: expr; [ref val] => $action_ref_val: expr; [val ref] => $action_val_ref: expr; [ref ref] => $action_ref_ref: expr;) => { isometry_from_composition_impl!( $Op, $op; ($R1, $C1),($R2, $C2) $(for $Dims: $DimsBound),*; $lhs: $Lhs, $rhs: $Rhs, Output = $Output; $action_val_val; ); isometry_from_composition_impl!( $Op, $op; ($R1, $C1),($R2, $C2) $(for $Dims: $DimsBound),*; $lhs: &'a $Lhs, $rhs: $Rhs, Output = $Output; $action_ref_val; 'a); isometry_from_composition_impl!( $Op, $op; ($R1, $C1),($R2, $C2) $(for $Dims: $DimsBound),*; $lhs: $Lhs, $rhs: &'b $Rhs, Output = $Output; $action_val_ref; 'b); isometry_from_composition_impl!( $Op, $op; ($R1, $C1),($R2, $C2) $(for $Dims: $DimsBound),*; $lhs: &'a $Lhs, $rhs: &'b $Rhs, Output = $Output; $action_ref_ref; 'a, 'b); } ); // Rotation × Translation isometry_from_composition_impl_all!( Mul, mul; (D, D), (D, U1) for D: DimName; self: Rotation, right: Translation, Output = Isometry>; [val val] => Isometry::from_parts(Translation::from(&self * right.vector), self); [ref val] => Isometry::from_parts(Translation::from(self * right.vector), self.clone()); [val ref] => Isometry::from_parts(Translation::from(&self * &right.vector), self); [ref ref] => Isometry::from_parts(Translation::from(self * &right.vector), self.clone()); ); // UnitQuaternion × Translation isometry_from_composition_impl_all!( Mul, mul; (U4, U1), (U3, U1); self: UnitQuaternion, right: Translation, Output = Isometry>; [val val] => Isometry::from_parts(Translation::from(&self * right.vector), self); [ref val] => Isometry::from_parts(Translation::from( self * right.vector), self.clone()); [val ref] => Isometry::from_parts(Translation::from(&self * &right.vector), self); [ref ref] => Isometry::from_parts(Translation::from( self * &right.vector), self.clone()); ); // Isometry × Rotation isometry_from_composition_impl_all!( Mul, mul; (D, D), (D, U1) for D: DimName; self: Isometry>, rhs: Rotation, Output = Isometry>; [val val] => Isometry::from_parts(self.translation, self.rotation * rhs); [ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // FIXME: do not clone. [val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone()); [ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone()); ); // Rotation × Isometry isometry_from_composition_impl_all!( Mul, mul; (D, D), (D, U1) for D: DimName; self: Rotation, right: Isometry>, Output = Isometry>; [val val] => &self * &right; [ref val] => self * &right; [val ref] => &self * right; [ref ref] => { let shift = self * &right.translation.vector; Isometry::from_parts(Translation::from(shift), self * &right.rotation) }; ); // Isometry ÷ Rotation isometry_from_composition_impl_all!( Div, div; (D, D), (D, U1) for D: DimName; self: Isometry>, rhs: Rotation, Output = Isometry>; [val val] => Isometry::from_parts(self.translation, self.rotation / rhs); [ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // FIXME: do not clone. [val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone()); [ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone()); ); // Rotation ÷ Isometry isometry_from_composition_impl_all!( Div, div; (D, D), (D, U1) for D: DimName; self: Rotation, right: Isometry>, Output = Isometry>; // FIXME: don't call inverse explicitly? [val val] => self * right.inverse(); [ref val] => self * right.inverse(); [val ref] => self * right.inverse(); [ref ref] => self * right.inverse(); ); // Isometry × UnitQuaternion isometry_from_composition_impl_all!( Mul, mul; (U4, U1), (U3, U1); self: Isometry>, rhs: UnitQuaternion, Output = Isometry>; [val val] => Isometry::from_parts(self.translation, self.rotation * rhs); [ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs); // FIXME: do not clone. [val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone()); [ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone()); ); // UnitQuaternion × Isometry isometry_from_composition_impl_all!( Mul, mul; (U4, U1), (U3, U1); self: UnitQuaternion, right: Isometry>, Output = Isometry>; [val val] => &self * &right; [ref val] => self * &right; [val ref] => &self * right; [ref ref] => { let shift = self * &right.translation.vector; Isometry::from_parts(Translation::from(shift), self * &right.rotation) }; ); // Isometry ÷ UnitQuaternion isometry_from_composition_impl_all!( Div, div; (U4, U1), (U3, U1); self: Isometry>, rhs: UnitQuaternion, Output = Isometry>; [val val] => Isometry::from_parts(self.translation, self.rotation / rhs); [ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs); // FIXME: do not clone. [val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone()); [ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone()); ); // UnitQuaternion ÷ Isometry isometry_from_composition_impl_all!( Div, div; (U4, U1), (U3, U1); self: UnitQuaternion, right: Isometry>, Output = Isometry>; // FIXME: don't call inverse explicitly? [val val] => self * right.inverse(); [ref val] => self * right.inverse(); [val ref] => self * right.inverse(); [ref ref] => self * right.inverse(); ); // Translation × Rotation isometry_from_composition_impl_all!( Mul, mul; (D, D), (D, U1) for D: DimName; self: Translation, right: Rotation, Output = Isometry>; [val val] => Isometry::from_parts(self, right); [ref val] => Isometry::from_parts(self.clone(), right); [val ref] => Isometry::from_parts(self, right.clone()); [ref ref] => Isometry::from_parts(self.clone(), right.clone()); ); // Translation × UnitQuaternion isometry_from_composition_impl_all!( Mul, mul; (U4, U1), (U3, U1); self: Translation, right: UnitQuaternion, Output = Isometry>; [val val] => Isometry::from_parts(self, right); [ref val] => Isometry::from_parts(self.clone(), right); [val ref] => Isometry::from_parts(self, right.clone()); [ref ref] => Isometry::from_parts(self.clone(), right.clone()); );