//! This module provides the matrix exponent (exp) function to square matrices. //! use crate::{ base::{ allocator::Allocator, dimension::{Dim, DimMin, DimMinimum, U1}, storage::Storage, DefaultAllocator, }, convert, try_convert, ComplexField, MatrixN, RealField, }; // https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/sparse/linalg/matfuncs.py struct ExpmPadeHelper where N: RealField, D: DimMin, DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum>, { use_exact_norm: bool, ident: MatrixN, a: MatrixN, a2: Option>, a4: Option>, a6: Option>, a8: Option>, a10: Option>, d4_exact: Option, d6_exact: Option, d8_exact: Option, d10_exact: Option, d4_approx: Option, d6_approx: Option, d8_approx: Option, d10_approx: Option, } impl ExpmPadeHelper where N: RealField, D: DimMin, DefaultAllocator: Allocator + Allocator + Allocator<(usize, usize), DimMinimum>, { fn new(a: MatrixN, use_exact_norm: bool) -> Self { let (nrows, ncols) = a.data.shape(); ExpmPadeHelper { use_exact_norm, ident: MatrixN::::identity_generic(nrows, ncols), a, a2: None, a4: None, a6: None, a8: None, a10: None, d4_exact: None, d6_exact: None, d8_exact: None, d10_exact: None, d4_approx: None, d6_approx: None, d8_approx: None, d10_approx: None, } } fn calc_a2(&mut self) { if self.a2.is_none() { self.a2 = Some(&self.a * &self.a); } } fn calc_a4(&mut self) { if self.a4.is_none() { self.calc_a2(); let a2 = self.a2.as_ref().unwrap(); self.a4 = Some(a2 * a2); } } fn calc_a6(&mut self) { if self.a6.is_none() { self.calc_a2(); self.calc_a4(); let a2 = self.a2.as_ref().unwrap(); let a4 = self.a4.as_ref().unwrap(); self.a6 = Some(a4 * a2); } } fn calc_a8(&mut self) { if self.a8.is_none() { self.calc_a2(); self.calc_a6(); let a2 = self.a2.as_ref().unwrap(); let a6 = self.a6.as_ref().unwrap(); self.a8 = Some(a6 * a2); } } fn calc_a10(&mut self) { if self.a10.is_none() { self.calc_a4(); self.calc_a6(); let a4 = self.a4.as_ref().unwrap(); let a6 = self.a6.as_ref().unwrap(); self.a10 = Some(a6 * a4); } } fn d4_tight(&mut self) -> N { if self.d4_exact.is_none() { self.calc_a4(); self.d4_exact = Some(one_norm(self.a4.as_ref().unwrap()).powf(convert(0.25))); } self.d4_exact.unwrap() } fn d6_tight(&mut self) -> N { if self.d6_exact.is_none() { self.calc_a6(); self.d6_exact = Some(one_norm(self.a6.as_ref().unwrap()).powf(convert(1.0 / 6.0))); } self.d6_exact.unwrap() } fn d8_tight(&mut self) -> N { if self.d8_exact.is_none() { self.calc_a8(); self.d8_exact = Some(one_norm(self.a8.as_ref().unwrap()).powf(convert(1.0 / 8.0))); } self.d8_exact.unwrap() } fn d10_tight(&mut self) -> N { if self.d10_exact.is_none() { self.calc_a10(); self.d10_exact = Some(one_norm(self.a10.as_ref().unwrap()).powf(convert(1.0 / 10.0))); } self.d10_exact.unwrap() } fn d4_loose(&mut self) -> N { if self.use_exact_norm { return self.d4_tight(); } if self.d4_exact.is_some() { return self.d4_exact.unwrap(); } if self.d4_approx.is_none() { self.calc_a4(); self.d4_approx = Some(one_norm(self.a4.as_ref().unwrap()).powf(convert(0.25))); } self.d4_approx.unwrap() } fn d6_loose(&mut self) -> N { if self.use_exact_norm { return self.d6_tight(); } if self.d6_exact.is_some() { return self.d6_exact.unwrap(); } if self.d6_approx.is_none() { self.calc_a6(); self.d6_approx = Some(one_norm(self.a6.as_ref().unwrap()).powf(convert(1.0 / 6.0))); } self.d6_approx.unwrap() } fn d8_loose(&mut self) -> N { if self.use_exact_norm { return self.d8_tight(); } if self.d8_exact.is_some() { return self.d8_exact.unwrap(); } if self.d8_approx.is_none() { self.calc_a8(); self.d8_approx = Some(one_norm(self.a8.as_ref().unwrap()).powf(convert(1.0 / 8.0))); } self.d8_approx.unwrap() } fn d10_loose(&mut self) -> N { if self.use_exact_norm { return self.d10_tight(); } if self.d10_exact.is_some() { return self.d10_exact.unwrap(); } if self.d10_approx.is_none() { self.calc_a10(); self.d10_approx = Some(one_norm(self.a10.as_ref().unwrap()).powf(convert(1.0 / 10.0))); } self.d10_approx.unwrap() } fn pade3(&mut self) -> (MatrixN, MatrixN) { let b: [N; 4] = [convert(120.0), convert(60.0), convert(12.0), convert(1.0)]; self.calc_a2(); let a2 = self.a2.as_ref().unwrap(); let u = &self.a * (a2 * b[3] + &self.ident * b[1]); let v = a2 * b[2] + &self.ident * b[0]; (u, v) } fn pade5(&mut self) -> (MatrixN, MatrixN) { let b: [N; 6] = [ convert(30240.0), convert(15120.0), convert(3360.0), convert(420.0), convert(30.0), convert(1.0), ]; self.calc_a2(); self.calc_a6(); let u = &self.a * (self.a4.as_ref().unwrap() * b[5] + self.a2.as_ref().unwrap() * b[3] + &self.ident * b[1]); let v = self.a4.as_ref().unwrap() * b[4] + self.a2.as_ref().unwrap() * b[2] + &self.ident * b[0]; (u, v) } fn pade7(&mut self) -> (MatrixN, MatrixN) { let b: [N; 8] = [ convert(17297280.0), convert(8648640.0), convert(1995840.0), convert(277200.0), convert(25200.0), convert(1512.0), convert(56.0), convert(1.0), ]; self.calc_a2(); self.calc_a4(); self.calc_a6(); let u = &self.a * (self.a6.as_ref().unwrap() * b[7] + self.a4.as_ref().unwrap() * b[5] + self.a2.as_ref().unwrap() * b[3] + &self.ident * b[1]); let v = self.a6.as_ref().unwrap() * b[6] + self.a4.as_ref().unwrap() * b[4] + self.a2.as_ref().unwrap() * b[2] + &self.ident * b[0]; (u, v) } fn pade9(&mut self) -> (MatrixN, MatrixN) { let b: [N; 10] = [ convert(17643225600.0), convert(8821612800.0), convert(2075673600.0), convert(302702400.0), convert(30270240.0), convert(2162160.0), convert(110880.0), convert(3960.0), convert(90.0), convert(1.0), ]; self.calc_a2(); self.calc_a4(); self.calc_a6(); self.calc_a8(); let u = &self.a * (self.a8.as_ref().unwrap() * b[9] + self.a6.as_ref().unwrap() * b[7] + self.a4.as_ref().unwrap() * b[5] + self.a2.as_ref().unwrap() * b[3] + &self.ident * b[1]); let v = self.a8.as_ref().unwrap() * b[8] + self.a6.as_ref().unwrap() * b[6] + self.a4.as_ref().unwrap() * b[4] + self.a2.as_ref().unwrap() * b[2] + &self.ident * b[0]; (u, v) } fn pade13_scaled(&mut self, s: u64) -> (MatrixN, MatrixN) { let b: [N; 14] = [ convert(64764752532480000.0), convert(32382376266240000.0), convert(7771770303897600.0), convert(1187353796428800.0), convert(129060195264000.0), convert(10559470521600.0), convert(670442572800.0), convert(33522128640.0), convert(1323241920.0), convert(40840800.0), convert(960960.0), convert(16380.0), convert(182.0), convert(1.0), ]; let s = s as f64; let mb = &self.a * convert::(2.0_f64.powf(-s)); self.calc_a2(); self.calc_a4(); self.calc_a6(); let mb2 = self.a2.as_ref().unwrap() * convert::(2.0_f64.powf(-2.0 * s)); let mb4 = self.a4.as_ref().unwrap() * convert::(2.0.powf(-4.0 * s)); let mb6 = self.a6.as_ref().unwrap() * convert::(2.0.powf(-6.0 * s)); let u2 = &mb6 * (&mb6 * b[13] + &mb4 * b[11] + &mb2 * b[9]); let u = &mb * (&u2 + &mb6 * b[7] + &mb4 * b[5] + &mb2 * b[3] + &self.ident * b[1]); let v2 = &mb6 * (&mb6 * b[12] + &mb4 * b[10] + &mb2 * b[8]); let v = v2 + &mb6 * b[6] + &mb4 * b[4] + &mb2 * b[2] + &self.ident * b[0]; (u, v) } } fn factorial(n: u128) -> u128 { if n == 1 { return 1; } n * factorial(n - 1) } /// Compute the 1-norm of a non-negative integer power of a non-negative matrix. fn onenorm_matrix_power_nonm(a: &MatrixN, p: u64) -> N where N: RealField, D: Dim, DefaultAllocator: Allocator + Allocator, { let nrows = a.data.shape().0; let mut v = crate::VectorN::::repeat_generic(nrows, U1, convert(1.0)); let m = a.transpose(); for _ in 0..p { v = &m * v; } v.max() } fn ell(a: &MatrixN, m: u64) -> u64 where N: RealField, D: Dim, DefaultAllocator: Allocator + Allocator, { // 2m choose m = (2m)!/(m! * (2m-m)!) let a_abs_onenorm = onenorm_matrix_power_nonm(&a.abs(), 2 * m + 1); if a_abs_onenorm == N::zero() { return 0; } let choose_2m_m = factorial(2 * m as u128) / (factorial(m as u128) * factorial(2 * m as u128 - m as u128)); let abs_c_recip = choose_2m_m * factorial(2 * m as u128 + 1); let alpha = a_abs_onenorm / one_norm(a); let alpha: f64 = try_convert(alpha).unwrap() / abs_c_recip as f64; let u = 2_f64.powf(-53.0); let log2_alpha_div_u = (alpha / u).log2(); let value = (log2_alpha_div_u / (2.0 * m as f64)).ceil(); if value > 0.0 { value as u64 } else { 0 } } fn solve_p_q(u: MatrixN, v: MatrixN) -> MatrixN where N: ComplexField, D: DimMin, DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum>, { let p = &u + &v; let q = &v - &u; q.lu().solve(&p).unwrap() } fn one_norm(m: &MatrixN) -> N where N: RealField, D: Dim, DefaultAllocator: Allocator, { let mut max = N::zero(); for i in 0..m.ncols() { let col = m.column(i); max = max.max(col.iter().fold(N::zero(), |a, b| a + b.abs())); } max } impl MatrixN where D: DimMin, DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum> + Allocator, { /// Computes exponential of this matrix pub fn exp(&self) -> Self { // Simple case if self.nrows() == 1 { return self.map(|v| v.exp()); } let mut h = ExpmPadeHelper::new(self.clone(), true); let eta_1 = N::max(h.d4_loose(), h.d6_loose()); if eta_1 < convert(1.495585217958292e-002) && ell(&h.a, 3) == 0 { let (u, v) = h.pade3(); return solve_p_q(u, v); } let eta_2 = N::max(h.d4_tight(), h.d6_loose()); if eta_2 < convert(2.539398330063230e-001) && ell(&h.a, 5) == 0 { let (u, v) = h.pade5(); return solve_p_q(u, v); } let eta_3 = N::max(h.d6_tight(), h.d8_loose()); if eta_3 < convert(9.504178996162932e-001) && ell(&h.a, 7) == 0 { let (u, v) = h.pade7(); return solve_p_q(u, v); } if eta_3 < convert(2.097847961257068e+000) && ell(&h.a, 9) == 0 { let (u, v) = h.pade9(); return solve_p_q(u, v); } let eta_4 = N::max(h.d8_loose(), h.d10_loose()); let eta_5 = N::min(eta_3, eta_4); let theta_13 = convert(4.25); let mut s = if eta_5 == N::zero() { 0 } else { let l2 = try_convert((eta_5 / theta_13).log2().ceil()).unwrap(); if l2 < 0.0 { 0 } else { l2 as u64 } }; s += ell(&(&h.a * convert::(2.0_f64.powf(-(s as f64)))), 13); let (u, v) = h.pade13_scaled(s); let mut x = solve_p_q(u, v); for _ in 0..s { x = &x * &x; } x } } #[cfg(test)] mod tests { #[test] fn one_norm() { use crate::Matrix3; let m = Matrix3::new(-3.0, 5.0, 7.0, 2.0, 6.0, 4.0, 0.0, 2.0, 8.0); assert_eq!(super::one_norm(&m), 19.0); } }