#[cfg(feature = "arbitrary")] use crate::base::dimension::U4; #[cfg(feature = "arbitrary")] use crate::base::storage::Owned; #[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; #[cfg(feature = "rand-no-std")] use rand::{ distributions::{Distribution, OpenClosed01, Standard}, Rng, }; use num::{One, Zero}; use simba::scalar::RealField; use simba::simd::SimdBool; use crate::base::dimension::U3; use crate::base::storage::Storage; use crate::base::{Matrix3, Matrix4, Unit, Vector, Vector3, Vector4}; use crate::{Scalar, SimdRealField}; use crate::geometry::{Quaternion, Rotation3, UnitQuaternion}; impl Quaternion { /// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w` /// vector component. #[inline] #[deprecated(note = "Use `::from` instead.")] pub fn from_vector(vector: Vector4) -> Self { Self { coords: vector } } /// Creates a new quaternion from its individual components. Note that the arguments order does /// **not** follow the storage order. /// /// The storage order is `[ i, j, k, w ]` while the arguments for this functions are in the /// order `(w, i, j, k)`. /// /// # Example /// ``` /// # use nalgebra::{Quaternion, Vector4}; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0); /// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0)); /// ``` #[inline] pub fn new(w: N, i: N, j: N, k: N) -> Self { Self::from(Vector4::new(i, j, k, w)) } } impl Quaternion { /// Constructs a pure quaternion. #[inline] pub fn from_imag(vector: Vector3) -> Self { Self::from_parts(N::zero(), vector) } /// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does /// **not** follow the storage order. /// /// The storage order is [ vector, scalar ]. /// /// # Example /// ``` /// # use nalgebra::{Quaternion, Vector3, Vector4}; /// let w = 1.0; /// let ijk = Vector3::new(2.0, 3.0, 4.0); /// let q = Quaternion::from_parts(w, ijk); /// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0); /// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0)); /// ``` #[inline] // TODO: take a reference to `vector`? pub fn from_parts(scalar: N, vector: Vector) -> Self where SB: Storage, { Self::new(scalar, vector[0], vector[1], vector[2]) } /// Constructs a real quaternion. #[inline] pub fn from_real(r: N) -> Self { Self::from_parts(r, Vector3::zero()) } /// The quaternion multiplicative identity. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::identity(); /// let q2 = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// /// assert_eq!(q * q2, q2); /// assert_eq!(q2 * q, q2); /// ``` #[inline] pub fn identity() -> Self { Self::from_real(N::one()) } } // TODO: merge with the previous block. impl Quaternion where N::Element: SimdRealField, { /// Creates a new quaternion from its polar decomposition. /// /// Note that `axis` is assumed to be a unit vector. // TODO: take a reference to `axis`? pub fn from_polar_decomposition(scale: N, theta: N, axis: Unit>) -> Self where SB: Storage, { let rot = UnitQuaternion::::from_axis_angle(&axis, theta * crate::convert(2.0f64)); rot.into_inner() * scale } } impl One for Quaternion where N::Element: SimdRealField, { #[inline] fn one() -> Self { Self::identity() } } impl Zero for Quaternion where N::Element: SimdRealField, { #[inline] fn zero() -> Self { Self::from(Vector4::zero()) } #[inline] fn is_zero(&self) -> bool { self.coords.is_zero() } } #[cfg(feature = "rand-no-std")] impl Distribution> for Standard where Standard: Distribution, { #[inline] fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> Quaternion { Quaternion::new(rng.gen(), rng.gen(), rng.gen(), rng.gen()) } } #[cfg(feature = "arbitrary")] impl Arbitrary for Quaternion where Owned: Send, { #[inline] fn arbitrary(g: &mut Gen) -> Self { Self::new( N::arbitrary(g), N::arbitrary(g), N::arbitrary(g), N::arbitrary(g), ) } } impl UnitQuaternion where N::Element: SimdRealField, { /// The rotation identity. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Vector3, Point3}; /// let q = UnitQuaternion::identity(); /// let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0)); /// let v = Vector3::new_random(); /// let p = Point3::from(v); /// /// assert_eq!(q * q2, q2); /// assert_eq!(q2 * q, q2); /// assert_eq!(q * v, v); /// assert_eq!(q * p, p); /// ``` #[inline] pub fn identity() -> Self { Self::new_unchecked(Quaternion::identity()) } /// Creates a new quaternion from a unit vector (the rotation axis) and an angle /// (the rotation angle). /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axis = Vector3::y_axis(); /// let angle = f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::from_axis_angle(&axis, angle); /// /// assert_eq!(q.axis().unwrap(), axis); /// assert_eq!(q.angle(), angle); /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::::zeros()), UnitQuaternion::identity()); /// ``` #[inline] pub fn from_axis_angle(axis: &Unit>, angle: N) -> Self where SB: Storage, { let (sang, cang) = (angle / crate::convert(2.0f64)).simd_sin_cos(); let q = Quaternion::from_parts(cang, axis.as_ref() * sang); Self::new_unchecked(q) } /// Creates a new unit quaternion from a quaternion. /// /// The input quaternion will be normalized. #[inline] pub fn from_quaternion(q: Quaternion) -> Self { Self::new_normalize(q) } /// Creates a new unit quaternion from Euler angles. /// /// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::UnitQuaternion; /// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3); /// let euler = rot.euler_angles(); /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6); /// ``` #[inline] pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self { let (sr, cr) = (roll * crate::convert(0.5f64)).simd_sin_cos(); let (sp, cp) = (pitch * crate::convert(0.5f64)).simd_sin_cos(); let (sy, cy) = (yaw * crate::convert(0.5f64)).simd_sin_cos(); let q = Quaternion::new( cr * cp * cy + sr * sp * sy, sr * cp * cy - cr * sp * sy, cr * sp * cy + sr * cp * sy, cr * cp * sy - sr * sp * cy, ); Self::new_unchecked(q) } /// Builds an unit quaternion from a basis assumed to be orthonormal. /// /// In order to get a valid unit-quaternion, the input must be an /// orthonormal basis, i.e., all vectors are normalized, and the are /// all orthogonal to each other. These invariants are not checked /// by this method. pub fn from_basis_unchecked(basis: &[Vector3; 3]) -> Self { let rot = Rotation3::from_basis_unchecked(basis); Self::from_rotation_matrix(&rot) } /// Builds an unit quaternion from a rotation matrix. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Rotation3, UnitQuaternion, Vector3}; /// let axis = Vector3::y_axis(); /// let angle = 0.1; /// let rot = Rotation3::from_axis_angle(&axis, angle); /// let q = UnitQuaternion::from_rotation_matrix(&rot); /// assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6); /// assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6); /// assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6); /// ``` #[inline] pub fn from_rotation_matrix(rotmat: &Rotation3) -> Self { // Robust matrix to quaternion transformation. // See https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion let tr = rotmat[(0, 0)] + rotmat[(1, 1)] + rotmat[(2, 2)]; let quarter: N = crate::convert(0.25); let res = tr.simd_gt(N::zero()).if_else3( || { let denom = (tr + N::one()).simd_sqrt() * crate::convert(2.0); Quaternion::new( quarter * denom, (rotmat[(2, 1)] - rotmat[(1, 2)]) / denom, (rotmat[(0, 2)] - rotmat[(2, 0)]) / denom, (rotmat[(1, 0)] - rotmat[(0, 1)]) / denom, ) }, ( || rotmat[(0, 0)].simd_gt(rotmat[(1, 1)]) & rotmat[(0, 0)].simd_gt(rotmat[(2, 2)]), || { let denom = (N::one() + rotmat[(0, 0)] - rotmat[(1, 1)] - rotmat[(2, 2)]) .simd_sqrt() * crate::convert(2.0); Quaternion::new( (rotmat[(2, 1)] - rotmat[(1, 2)]) / denom, quarter * denom, (rotmat[(0, 1)] + rotmat[(1, 0)]) / denom, (rotmat[(0, 2)] + rotmat[(2, 0)]) / denom, ) }, ), ( || rotmat[(1, 1)].simd_gt(rotmat[(2, 2)]), || { let denom = (N::one() + rotmat[(1, 1)] - rotmat[(0, 0)] - rotmat[(2, 2)]) .simd_sqrt() * crate::convert(2.0); Quaternion::new( (rotmat[(0, 2)] - rotmat[(2, 0)]) / denom, (rotmat[(0, 1)] + rotmat[(1, 0)]) / denom, quarter * denom, (rotmat[(1, 2)] + rotmat[(2, 1)]) / denom, ) }, ), || { let denom = (N::one() + rotmat[(2, 2)] - rotmat[(0, 0)] - rotmat[(1, 1)]) .simd_sqrt() * crate::convert(2.0); Quaternion::new( (rotmat[(1, 0)] - rotmat[(0, 1)]) / denom, (rotmat[(0, 2)] + rotmat[(2, 0)]) / denom, (rotmat[(1, 2)] + rotmat[(2, 1)]) / denom, quarter * denom, ) }, ); Self::new_unchecked(res) } /// Builds an unit quaternion by extracting the rotation part of the given transformation `m`. /// /// This is an iterative method. See `.from_matrix_eps` to provide mover /// convergence parameters and starting solution. /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. pub fn from_matrix(m: &Matrix3) -> Self where N: RealField, { Rotation3::from_matrix(m).into() } /// Builds an unit quaternion by extracting the rotation part of the given transformation `m`. /// /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. /// /// # Parameters /// /// * `m`: the matrix from which the rotational part is to be extracted. /// * `eps`: the angular errors tolerated between the current rotation and the optimal one. /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`. /// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close /// to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other /// guesses come to mind. pub fn from_matrix_eps(m: &Matrix3, eps: N, max_iter: usize, guess: Self) -> Self where N: RealField, { let guess = Rotation3::from(guess); Rotation3::from_matrix_eps(m, eps, max_iter, guess).into() } /// The unit quaternion needed to make `a` and `b` be collinear and point toward the same /// direction. Returns `None` if both `a` and `b` are collinear and point to opposite directions, as then the /// rotation desired is not unique. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector3, UnitQuaternion}; /// let a = Vector3::new(1.0, 2.0, 3.0); /// let b = Vector3::new(3.0, 1.0, 2.0); /// let q = UnitQuaternion::rotation_between(&a, &b).unwrap(); /// assert_relative_eq!(q * a, b); /// assert_relative_eq!(q.inverse() * b, a); /// ``` #[inline] pub fn rotation_between(a: &Vector, b: &Vector) -> Option where N: RealField, SB: Storage, SC: Storage, { Self::scaled_rotation_between(a, b, N::one()) } /// The smallest rotation needed to make `a` and `b` collinear and point toward the same /// direction, raised to the power `s`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector3, UnitQuaternion}; /// let a = Vector3::new(1.0, 2.0, 3.0); /// let b = Vector3::new(3.0, 1.0, 2.0); /// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap(); /// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap(); /// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_rotation_between( a: &Vector, b: &Vector, s: N, ) -> Option where N: RealField, SB: Storage, SC: Storage, { // TODO: code duplication with Rotation. if let (Some(na), Some(nb)) = ( Unit::try_new(a.clone_owned(), N::zero()), Unit::try_new(b.clone_owned(), N::zero()), ) { Self::scaled_rotation_between_axis(&na, &nb, s) } else { Some(Self::identity()) } } /// The unit quaternion needed to make `a` and `b` be collinear and point toward the same /// direction. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Unit, Vector3, UnitQuaternion}; /// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0)); /// let q = UnitQuaternion::rotation_between(&a, &b).unwrap(); /// assert_relative_eq!(q * a, b); /// assert_relative_eq!(q.inverse() * b, a); /// ``` #[inline] pub fn rotation_between_axis( a: &Unit>, b: &Unit>, ) -> Option where N: RealField, SB: Storage, SC: Storage, { Self::scaled_rotation_between_axis(a, b, N::one()) } /// The smallest rotation needed to make `a` and `b` collinear and point toward the same /// direction, raised to the power `s`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Unit, Vector3, UnitQuaternion}; /// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0)); /// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap(); /// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap(); /// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_rotation_between_axis( na: &Unit>, nb: &Unit>, s: N, ) -> Option where N: RealField, SB: Storage, SC: Storage, { // TODO: code duplication with Rotation. let c = na.cross(&nb); if let Some(axis) = Unit::try_new(c, N::default_epsilon()) { let cos = na.dot(&nb); // The cosinus may be out of [-1, 1] because of inaccuracies. if cos <= -N::one() { None } else if cos >= N::one() { Some(Self::identity()) } else { Some(Self::from_axis_angle(&axis, cos.acos() * s)) } } else if na.dot(&nb) < N::zero() { // PI // // The rotation axis is undefined but the angle not zero. This is not a // simple rotation. None } else { // Zero Some(Self::identity()) } } /// Creates an unit quaternion that corresponds to the local frame of an observer standing at the /// origin and looking toward `dir`. /// /// It maps the `z` axis to the direction `dir`. /// /// # Arguments /// * dir - The look direction. It does not need to be normalized. /// * up - The vertical direction. It does not need to be normalized. /// The only requirement of this parameter is to not be collinear to `dir`. Non-collinearity /// is not checked. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let q = UnitQuaternion::face_towards(&dir, &up); /// assert_relative_eq!(q * Vector3::z(), dir.normalize()); /// ``` #[inline] pub fn face_towards(dir: &Vector, up: &Vector) -> Self where SB: Storage, SC: Storage, { Self::from_rotation_matrix(&Rotation3::face_towards(dir, up)) } /// Deprecated: Use [UnitQuaternion::face_towards] instead. #[deprecated(note = "renamed to `face_towards`")] pub fn new_observer_frames(dir: &Vector, up: &Vector) -> Self where SB: Storage, SC: Storage, { Self::face_towards(dir, up) } /// Builds a right-handed look-at view matrix without translation. /// /// It maps the view direction `dir` to the **negative** `z` axis. /// This conforms to the common notion of right handed look-at matrix from the computer /// graphics community. /// /// # Arguments /// * dir − The view direction. It does not need to be normalized. /// * up - A vector approximately aligned with required the vertical axis. It does not need /// to be normalized. The only requirement of this parameter is to not be collinear to `dir`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let q = UnitQuaternion::look_at_rh(&dir, &up); /// assert_relative_eq!(q * dir.normalize(), -Vector3::z()); /// ``` #[inline] pub fn look_at_rh(dir: &Vector, up: &Vector) -> Self where SB: Storage, SC: Storage, { Self::face_towards(&-dir, up).inverse() } /// Builds a left-handed look-at view matrix without translation. /// /// It maps the view direction `dir` to the **positive** `z` axis. /// This conforms to the common notion of left handed look-at matrix from the computer /// graphics community. /// /// # Arguments /// * dir − The view direction. It does not need to be normalized. /// * up - A vector approximately aligned with required the vertical axis. The only /// requirement of this parameter is to not be collinear to `dir`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let q = UnitQuaternion::look_at_lh(&dir, &up); /// assert_relative_eq!(q * dir.normalize(), Vector3::z()); /// ``` #[inline] pub fn look_at_lh(dir: &Vector, up: &Vector) -> Self where SB: Storage, SC: Storage, { Self::face_towards(dir, up).inverse() } /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle. /// /// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::new(axisangle); /// /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(UnitQuaternion::new(Vector3::::zeros()), UnitQuaternion::identity()); /// ``` #[inline] pub fn new(axisangle: Vector) -> Self where SB: Storage, { let two: N = crate::convert(2.0f64); let q = Quaternion::::from_imag(axisangle / two).exp(); Self::new_unchecked(q) } /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle. /// /// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::new_eps(axisangle, 1.0e-6); /// /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // An almost zero vector yields an identity. /// assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity()); /// ``` #[inline] pub fn new_eps(axisangle: Vector, eps: N) -> Self where SB: Storage, { let two: N = crate::convert(2.0f64); let q = Quaternion::::from_imag(axisangle / two).exp_eps(eps); Self::new_unchecked(q) } /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle. /// /// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation. /// Same as `Self::new(axisangle)`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::from_scaled_axis(axisangle); /// /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::::zeros()), UnitQuaternion::identity()); /// ``` #[inline] pub fn from_scaled_axis(axisangle: Vector) -> Self where SB: Storage, { Self::new(axisangle) } /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle. /// /// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation. /// Same as `Self::new_eps(axisangle, eps)`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6); /// /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // An almost zero vector yields an identity. /// assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity()); /// ``` #[inline] pub fn from_scaled_axis_eps(axisangle: Vector, eps: N) -> Self where SB: Storage, { Self::new_eps(axisangle, eps) } /// Create the mean unit quaternion from a data structure implementing IntoIterator /// returning unit quaternions. /// /// The method will panic if the iterator does not return any quaternions. /// /// Algorithm from: Oshman, Yaakov, and Avishy Carmi. "Attitude estimation from vector /// observations using a genetic-algorithm-embedded quaternion particle filter." Journal of /// Guidance, Control, and Dynamics 29.4 (2006): 879-891. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion}; /// let q1 = UnitQuaternion::from_euler_angles(0.0, 0.0, 0.0); /// let q2 = UnitQuaternion::from_euler_angles(-0.1, 0.0, 0.0); /// let q3 = UnitQuaternion::from_euler_angles(0.1, 0.0, 0.0); /// /// let quat_vec = vec![q1, q2, q3]; /// let q_mean = UnitQuaternion::mean_of(quat_vec); /// /// let euler_angles_mean = q_mean.euler_angles(); /// assert_relative_eq!(euler_angles_mean.0, 0.0, epsilon = 1.0e-7) /// ``` #[inline] pub fn mean_of(unit_quaternions: impl IntoIterator) -> Self where N: RealField, { let quaternions_matrix: Matrix4 = unit_quaternions .into_iter() .map(|q| q.as_vector() * q.as_vector().transpose()) .sum(); assert!(!quaternions_matrix.is_zero()); let eigen_matrix = quaternions_matrix .try_symmetric_eigen(N::RealField::default_epsilon(), 10) .expect("Quaternions matrix could not be diagonalized. This behavior should not be possible."); let max_eigenvalue_index = eigen_matrix .eigenvalues .iter() .position(|v| *v == eigen_matrix.eigenvalues.max()) .unwrap(); let max_eigenvector = eigen_matrix.eigenvectors.column(max_eigenvalue_index); UnitQuaternion::from_quaternion(Quaternion::new( max_eigenvector[0], max_eigenvector[1], max_eigenvector[2], max_eigenvector[3], )) } } impl One for UnitQuaternion where N::Element: SimdRealField, { #[inline] fn one() -> Self { Self::identity() } } #[cfg(feature = "rand-no-std")] impl Distribution> for Standard where N::Element: SimdRealField, OpenClosed01: Distribution, { /// Generate a uniformly distributed random rotation quaternion. #[inline] fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> UnitQuaternion { // Ken Shoemake's Subgroup Algorithm // Uniform random rotations. // In D. Kirk, editor, Graphics Gems III, pages 124-132. Academic, New York, 1992. let x0 = rng.sample(OpenClosed01); let x1 = rng.sample(OpenClosed01); let x2 = rng.sample(OpenClosed01); let theta1 = N::simd_two_pi() * x1; let theta2 = N::simd_two_pi() * x2; let s1 = theta1.simd_sin(); let c1 = theta1.simd_cos(); let s2 = theta2.simd_sin(); let c2 = theta2.simd_cos(); let r1 = (N::one() - x0).simd_sqrt(); let r2 = x0.simd_sqrt(); Unit::new_unchecked(Quaternion::new(s1 * r1, c1 * r1, s2 * r2, c2 * r2)) } } #[cfg(feature = "arbitrary")] impl Arbitrary for UnitQuaternion where Owned: Send, Owned: Send, { #[inline] fn arbitrary(g: &mut Gen) -> Self { let axisangle = Vector3::arbitrary(g); Self::from_scaled_axis(axisangle) } } #[cfg(test)] mod tests { extern crate rand_xorshift; use super::*; use rand::SeedableRng; #[test] fn random_unit_quats_are_unit() { let mut rng = rand_xorshift::XorShiftRng::from_seed([0xAB; 16]); for _ in 0..1000 { let x = rng.gen::>(); assert!(relative_eq!(x.into_inner().norm(), 1.0)) } } }