use alga::general::{ClosedAdd, ClosedMul}; use num::{One, Zero}; use std::iter; use std::marker::PhantomData; use std::mem; use std::ops::{Add, Mul, Range}; use std::slice; use allocator::Allocator; use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint}; use sparse::{CsMatrix, CsStorage, CsStorageIter, CsStorageIterMut, CsVecStorage, CsVector}; use storage::{Storage, StorageMut}; use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1}; pub struct CsCholesky where DefaultAllocator: Allocator + Allocator, { // Non-zero pattern of the original matrix upper-triangular part. // Unlike the original matrix, the `original_p` array does contain the last sentinel value // equal to `original_i.len()` at the end. original_p: Vec, original_i: Vec, // Decomposition result. l: CsMatrix, // Used only for the pattern. // FIXME: store only the nonzero pattern instead. u: CsMatrix, ok: bool, // Workspaces. work_x: VectorN, work_c: VectorN, } impl CsCholesky where DefaultAllocator: Allocator + Allocator, { /// Computes the cholesky decomposition of the sparse matrix `m`. pub fn new(m: &CsMatrix) -> Self { let mut me = Self::new_symbolic(m); let _ = me.decompose_left_looking(&m.data.vals); me } /// Perform symbolic analysis for the given matrix. /// /// This does not access the numerical values of `m`. pub fn new_symbolic(m: &CsMatrix) -> Self { assert!( m.is_square(), "The matrix `m` must be square to compute its elimination tree." ); let (l, u) = Self::nonzero_pattern(m); // Workspaces. let work_x = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) }; let work_c = unsafe { VectorN::new_uninitialized_generic(m.data.shape().1, U1) }; let mut original_p = m.data.p.as_slice().to_vec(); original_p.push(m.data.i.len()); CsCholesky { original_p, original_i: m.data.i.clone(), l, u, ok: false, work_x, work_c, } } pub fn l(&self) -> Option<&CsMatrix> { if self.ok { Some(&self.l) } else { None } } pub fn unwrap_l(self) -> Option> { if self.ok { Some(self.l) } else { None } } pub fn decompose_left_looking(&mut self, values: &[N]) -> bool { assert!( values.len() >= self.original_i.len(), "The set of values is too small." ); let n = self.l.nrows(); // Reset `work_c` to the column pointers of `l`. self.work_c.copy_from(&self.l.data.p); unsafe { for k in 0..n { // Scatter the k-th column of the original matrix with the values provided. let range_k = *self.original_p.get_unchecked(k)..*self.original_p.get_unchecked(k + 1); *self.work_x.vget_unchecked_mut(k) = N::zero(); for p in range_k.clone() { let irow = *self.original_i.get_unchecked(p); if irow >= k { *self.work_x.vget_unchecked_mut(irow) = *values.get_unchecked(p); } } for j in self.u.data.column_row_indices(k) { let factor = -*self .l .data .vals .get_unchecked(*self.work_c.vget_unchecked(j)); *self.work_c.vget_unchecked_mut(j) += 1; if j < k { for (z, val) in self.l.data.column_entries(j) { if z >= k { *self.work_x.vget_unchecked_mut(z) += val * factor; } } } } let diag = *self.work_x.vget_unchecked(k); if diag > N::zero() { let denom = diag.sqrt(); *self .l .data .vals .get_unchecked_mut(*self.l.data.p.vget_unchecked(k)) = denom; for (p, val) in self.l.data.column_entries_mut(k) { *val = *self.work_x.vget_unchecked(p) / denom; *self.work_x.vget_unchecked_mut(p) = N::zero(); } } else { self.ok = false; return false; } } } self.ok = true; true } // Performs the numerical Cholesky decomposition given the set of numerical values. pub fn decompose_up_looking(&mut self, values: &[N]) -> bool { assert!( values.len() >= self.original_i.len(), "The set of values is too small." ); // Reset `work_c` to the column pointers of `l`. self.work_c.copy_from(&self.l.data.p); // Perform the decomposition. for k in 0..self.l.nrows() { unsafe { // Scatter the k-th column of the original matrix with the values provided. let column_range = *self.original_p.get_unchecked(k)..*self.original_p.get_unchecked(k + 1); *self.work_x.vget_unchecked_mut(k) = N::zero(); for p in column_range.clone() { let irow = *self.original_i.get_unchecked(p); if irow <= k { *self.work_x.vget_unchecked_mut(irow) = *values.get_unchecked(p); } } let mut diag = *self.work_x.vget_unchecked(k); *self.work_x.vget_unchecked_mut(k) = N::zero(); // Triangular solve. for irow in self.u.data.column_row_indices(k) { if irow >= k { continue; } let lki = *self.work_x.vget_unchecked(irow) / *self .l .data .vals .get_unchecked(*self.l.data.p.vget_unchecked(irow)); *self.work_x.vget_unchecked_mut(irow) = N::zero(); for p in *self.l.data.p.vget_unchecked(irow) + 1..*self.work_c.vget_unchecked(irow) { *self .work_x .vget_unchecked_mut(*self.l.data.i.get_unchecked(p)) -= *self.l.data.vals.get_unchecked(p) * lki; } diag -= lki * lki; let p = *self.work_c.vget_unchecked(irow); *self.work_c.vget_unchecked_mut(irow) += 1; *self.l.data.i.get_unchecked_mut(p) = k; *self.l.data.vals.get_unchecked_mut(p) = lki; } if diag <= N::zero() { self.ok = false; return false; } // Deal with the diagonal element. let p = *self.work_c.vget_unchecked(k); *self.work_c.vget_unchecked_mut(k) += 1; *self.l.data.i.get_unchecked_mut(p) = k; *self.l.data.vals.get_unchecked_mut(p) = diag.sqrt(); } } self.ok = true; true } fn elimination_tree>(m: &CsMatrix) -> Vec { let nrows = m.nrows(); let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect(); let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect(); for k in 0..nrows { for irow in m.data.column_row_indices(k) { let mut i = irow; while i < k { let i_ancestor = ancestor[i]; ancestor[i] = k; if i_ancestor == usize::max_value() { forest[i] = k; break; } i = i_ancestor; } } } forest } fn reach>( m: &CsMatrix, j: usize, max_j: usize, tree: &[usize], marks: &mut Vec, out: &mut Vec, ) { marks.clear(); marks.resize(tree.len(), false); // FIXME: avoid all those allocations. let mut tmp = Vec::new(); let mut res = Vec::new(); for irow in m.data.column_row_indices(j) { let mut curr = irow; while curr != usize::max_value() && curr <= max_j && !marks[curr] { marks[curr] = true; tmp.push(curr); curr = tree[curr]; } tmp.append(&mut res); mem::swap(&mut tmp, &mut res); } out.append(&mut res); } fn nonzero_pattern>( m: &CsMatrix, ) -> (CsMatrix, CsMatrix) { let etree = Self::elimination_tree(m); let (nrows, ncols) = m.data.shape(); let mut rows = Vec::with_capacity(m.len()); let mut cols = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) }; let mut marks = Vec::new(); // NOTE: the following will actually compute the non-zero pattern of // the transpose of l. for i in 0..nrows.value() { cols[i] = rows.len(); Self::reach(m, i, i, &etree, &mut marks, &mut rows); } let mut vals = Vec::with_capacity(rows.len()); unsafe { vals.set_len(rows.len()); } vals.shrink_to_fit(); let data = CsVecStorage { shape: (nrows, ncols), p: cols, i: rows, vals, }; let u = CsMatrix::from_data(data); // XXX: avoid this transpose. let l = u.transpose(); (l, u) } /* * * NOTE: All the following methods are untested and currently unused. * * fn column_counts>( m: &CsMatrix, tree: &[usize], ) -> Vec { let len = m.data.shape().0.value(); let mut counts: Vec<_> = iter::repeat(0).take(len).collect(); let mut reach = Vec::new(); let mut marks = Vec::new(); for i in 0..len { Self::reach(m, i, i, tree, &mut marks, &mut reach); for j in reach.drain(..) { counts[j] += 1; } } counts } fn tree_postorder(tree: &[usize]) -> Vec { // FIXME: avoid all those allocations? let mut first_child: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect(); let mut other_children: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect(); // Build the children list from the parent list. // The set of children of the node `i` is given by the linked list // starting at `first_child[i]`. The nodes of this list are then: // { first_child[i], other_children[first_child[i]], other_children[other_children[first_child[i]], ... } for (i, parent) in tree.iter().enumerate() { if *parent != usize::max_value() { let brother = first_child[*parent]; first_child[*parent] = i; other_children[i] = brother; } } let mut stack = Vec::with_capacity(tree.len()); let mut postorder = Vec::with_capacity(tree.len()); for (i, node) in tree.iter().enumerate() { if *node == usize::max_value() { Self::dfs( i, &mut first_child, &other_children, &mut stack, &mut postorder, ) } } postorder } fn dfs( i: usize, first_child: &mut [usize], other_children: &[usize], stack: &mut Vec, result: &mut Vec, ) { stack.clear(); stack.push(i); while let Some(n) = stack.pop() { let child = first_child[n]; if child == usize::max_value() { // No children left. result.push(n); } else { stack.push(n); stack.push(child); first_child[n] = other_children[child]; } } } */ }