use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::scalar::{RealField, SubsetOf};
use simba::simd::SimdRealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar, Unit};
use crate::geometry::{AbstractRotation, Point, Translation};
/// A direct isometry, i.e., a rotation followed by a translation (aka. a rigid-body motion).
///
/// This is also known as an element of a Special Euclidean (SE) group.
/// The `Isometry` type can either represent a 2D or 3D isometry.
/// A 2D isometry is composed of:
/// - A translation part of type [`Translation2`](crate::Translation2)
/// - A rotation part which can either be a [`UnitComplex`](crate::UnitComplex) or a [`Rotation2`](crate::Rotation2).
/// A 3D isometry is composed of:
/// - A translation part of type [`Translation3`](crate::Translation3)
/// - A rotation part which can either be a [`UnitQuaternion`](crate::UnitQuaternion) or a [`Rotation3`](crate::Rotation3).
///
/// Note that instead of using the [`Isometry`](crate::Isometry) type in your code directly, you should use one
/// of its aliases: [`Isometry2`](crate::Isometry2), [`Isometry3`](crate::Isometry3),
/// [`IsometryMatrix2`](crate::IsometryMatrix2), [`IsometryMatrix3`](crate::IsometryMatrix3). Though
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
/// this page.
///
/// # Construction
/// * [From a 2D vector and/or an angle `new`, `translation`, `rotation`…](#construction-from-a-2d-vector-andor-a-rotation-angle)
/// * [From a 3D vector and/or an axis-angle `new`, `translation`, `rotation`…](#construction-from-a-3d-vector-andor-an-axis-angle)
/// * [From a 3D eye position and target point `look_at`, `look_at_lh`, `face_towards`…](#construction-from-a-3d-eye-position-and-target-point)
/// * [From the translation and rotation parts `from_parts`…](#from-the-translation-and-rotation-parts)
///
/// # Transformation and composition
/// Note that transforming vectors and points can be done by multiplication, e.g., `isometry * point`.
/// Composing an isometry with another transformation can also be done by multiplication or division.
///
/// * [Transformation of a vector or a point `transform_vector`, `inverse_transform_point`…](#transformation-of-a-vector-or-a-point)
/// * [Inversion and in-place composition `inverse`, `append_rotation_wrt_point_mut`…](#inversion-and-in-place-composition)
/// * [Interpolation `lerp_slerp`…](#interpolation)
///
/// # Conversion to a matrix
/// * [Conversion to a matrix `to_matrix`…](#conversion-to-a-matrix)
///
#[repr(C)]
#[derive(Debug)]
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(serialize = "R: Serialize,
DefaultAllocator: Allocator>,
Owned>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(deserialize = "R: Deserialize<'de>,
DefaultAllocator: Allocator>,
Owned>: Deserialize<'de>"))
)]
pub struct Isometry {
/// The pure rotational part of this isometry.
pub rotation: R,
/// The pure translational part of this isometry.
pub translation: Translation,
}
#[cfg(feature = "abomonation-serialize")]
impl Abomonation for Isometry
where
T: SimdRealField,
R: Abomonation,
Translation: Abomonation,
{
unsafe fn entomb(&self, writer: &mut W) -> IOResult<()> {
self.rotation.entomb(writer)?;
self.translation.entomb(writer)
}
fn extent(&self) -> usize {
self.rotation.extent() + self.translation.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.rotation
.exhume(bytes)
.and_then(|bytes| self.translation.exhume(bytes))
}
}
#[cfg(feature = "rkyv-serialize-no-std")]
mod rkyv_impl {
use super::Isometry;
use crate::{base::Scalar, geometry::Translation};
use rkyv::{offset_of, project_struct, Archive, Deserialize, Fallible, Serialize};
impl Archive for Isometry
where
T::Archived: Scalar,
{
type Archived = Isometry;
type Resolver = (R::Resolver, as Archive>::Resolver);
fn resolve(
&self,
pos: usize,
resolver: Self::Resolver,
out: &mut core::mem::MaybeUninit,
) {
self.rotation.resolve(
pos + offset_of!(Self::Archived, rotation),
resolver.0,
project_struct!(out: Self::Archived => rotation),
);
self.translation.resolve(
pos + offset_of!(Self::Archived, translation),
resolver.1,
project_struct!(out: Self::Archived => translation),
);
}
}
impl, R: Serialize, S: Fallible + ?Sized, const D: usize>
Serialize for Isometry
where
T::Archived: Scalar,
{
fn serialize(&self, serializer: &mut S) -> Result {
Ok((
self.rotation.serialize(serializer)?,
self.translation.serialize(serializer)?,
))
}
}
impl
Deserialize, _D> for Isometry
where
T::Archived: Scalar + Deserialize,
R::Archived: Scalar + Deserialize,
{
fn deserialize(&self, deserializer: &mut _D) -> Result, _D::Error> {
Ok(Isometry {
rotation: self.rotation.deserialize(deserializer)?,
translation: self.translation.deserialize(deserializer)?,
})
}
}
}
impl hash::Hash for Isometry
where
Owned>: hash::Hash,
{
fn hash(&self, state: &mut H) {
self.translation.hash(state);
self.rotation.hash(state);
}
}
impl Copy for Isometry where
Owned>: Copy
{
}
impl Clone for Isometry {
#[inline]
fn clone(&self) -> Self {
Self {
rotation: self.rotation.clone(),
translation: self.translation.clone(),
}
}
}
/// # From the translation and rotation parts
impl, const D: usize> Isometry {
/// Creates a new isometry from its rotational and translational parts.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_parts(translation: Translation, rotation: R) -> Self {
Self {
rotation,
translation,
}
}
}
/// # Inversion and in-place composition
impl, const D: usize> Isometry
where
T::Element: SimdRealField,
{
/// Inverts `self`.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let inv = iso.inverse();
/// let pt = Point2::new(1.0, 2.0);
///
/// assert_eq!(inv * (iso * pt), pt);
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
let mut res = self.clone();
res.inverse_mut();
res
}
/// Inverts `self` in-place.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let pt = Point2::new(1.0, 2.0);
/// let transformed_pt = iso * pt;
/// iso.inverse_mut();
///
/// assert_eq!(iso * transformed_pt, pt);
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.rotation.inverse_mut();
self.translation.inverse_mut();
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
}
/// Computes `self.inverse() * rhs` in a more efficient way.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4);
///
/// assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));
/// ```
#[inline]
#[must_use]
pub fn inv_mul(&self, rhs: &Isometry) -> Self {
let inv_rot1 = self.rotation.inverse();
let tr_12 = rhs.translation.vector - self.translation.vector;
Isometry::from_parts(
inv_rot1.transform_vector(&tr_12).into(),
inv_rot1 * rhs.rotation.clone(),
)
}
/// Appends to `self` the given translation in-place.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let tra = Translation2::new(3.0, 4.0);
/// // Same as `iso = tra * iso`.
/// iso.append_translation_mut(&tra);
///
/// assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
/// ```
#[inline]
pub fn append_translation_mut(&mut self, t: &Translation) {
self.translation.vector += &t.vector
}
/// Appends to `self` the given rotation in-place.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
/// let rot = UnitComplex::new(f32::consts::PI / 2.0);
/// // Same as `iso = rot * iso`.
/// iso.append_rotation_mut(&rot);
///
/// assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.rotation = r.clone() * self.rotation.clone();
self.translation.vector = r.transform_vector(&self.translation.vector);
}
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
/// lets `p` invariant.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let pt = Point2::new(1.0, 0.0);
/// iso.append_rotation_wrt_point_mut(&rot, &pt);
///
/// assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point) {
self.translation.vector -= &p.coords;
self.append_rotation_mut(r);
self.translation.vector += &p.coords;
}
/// Appends in-place to `self` a rotation centered at the point with coordinates
/// `self.translation`.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// iso.append_rotation_wrt_center_mut(&rot);
///
/// // The translation part should not have changed.
/// assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
/// assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
/// ```
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
self.rotation = r.clone() * self.rotation.clone();
}
}
/// # Transformation of a vector or a point
impl, const D: usize> Isometry
where
T::Element: SimdRealField,
{
/// Transform the given point by this isometry.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point) -> Point {
self * pt
}
/// Transform the given vector by this isometry, ignoring the translation
/// component of the isometry.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_vector(&self, v: &SVector) -> SVector {
self * v
}
/// Transform the given point by the inverse of this isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_point(&self, pt: &Point) -> Point {
self.rotation
.inverse_transform_point(&(pt - self.translation.vector))
}
/// Transform the given vector by the inverse of this isometry, ignoring the
/// translation component of the isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_vector(&self, v: &SVector) -> SVector {
self.rotation.inverse_transform_vector(v)
}
/// Transform the given unit vector by the inverse of this isometry, ignoring the
/// translation component of the isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
/// assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_unit_vector(&self, v: &Unit>) -> Unit> {
self.rotation.inverse_transform_unit_vector(v)
}
}
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the dummy ZST field).
/// # Conversion to a matrix
impl Isometry {
/// Converts this isometry into its equivalent homogeneous transformation matrix.
///
/// This is the same as `self.to_matrix()`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
/// 0.5, 0.8660254, 20.0,
/// 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OMatrix, U1>, DimNameSum, U1>>
where
Const: DimNameAdd,
R: SubsetOf, U1>, DimNameSum, U1>>>,
DefaultAllocator: Allocator, U1>, DimNameSum, U1>>,
{
let mut res: OMatrix = crate::convert_ref(&self.rotation);
res.fixed_slice_mut::(0, D)
.copy_from(&self.translation.vector);
res
}
/// Converts this isometry into its equivalent homogeneous transformation matrix.
///
/// This is the same as `self.to_homogeneous()`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
/// 0.5, 0.8660254, 20.0,
/// 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_matrix(&self) -> OMatrix, U1>, DimNameSum, U1>>
where
Const: DimNameAdd,
R: SubsetOf, U1>, DimNameSum, U1>>>,
DefaultAllocator: Allocator, U1>, DimNameSum, U1>>,
{
self.to_homogeneous()
}
}
impl Eq for Isometry where
R: AbstractRotation + Eq
{
}
impl PartialEq for Isometry
where
R: AbstractRotation + PartialEq,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.translation == right.translation && self.rotation == right.rotation
}
}
impl AbsDiffEq for Isometry
where
R: AbstractRotation + AbsDiffEq,
T::Epsilon: Copy,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.translation.abs_diff_eq(&other.translation, epsilon)
&& self.rotation.abs_diff_eq(&other.rotation, epsilon)
}
}
impl RelativeEq for Isometry
where
R: AbstractRotation + RelativeEq,
T::Epsilon: Copy,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.translation
.relative_eq(&other.translation, epsilon, max_relative)
&& self
.rotation
.relative_eq(&other.rotation, epsilon, max_relative)
}
}
impl UlpsEq for Isometry
where
R: AbstractRotation + UlpsEq,
T::Epsilon: Copy,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.translation
.ulps_eq(&other.translation, epsilon, max_ulps)
&& self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl fmt::Display for Isometry
where
R: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
writeln!(f, "Isometry {{")?;
write!(f, "{:.*}", precision, self.translation)?;
write!(f, "{:.*}", precision, self.rotation)?;
writeln!(f, "}}")
}
}