use alga::general::{ClosedAdd, ClosedMul}; use num::{One, Zero}; use std::iter; use std::marker::PhantomData; use std::ops::{Add, Mul, Range}; use std::slice; use allocator::Allocator; use constraint::{AreMultipliable, DimEq, ShapeConstraint, SameNumberOfRows}; use storage::{Storage, StorageMut}; use {Real, DefaultAllocator, Dim, Matrix, MatrixMN, Scalar, Vector, VectorN, U1}; // FIXME: this structure exists for now only because impl trait // cannot be used for trait method return types. pub trait CsStorageIter<'a, N, R, C = U1> { type ColumnEntries: Iterator; fn column_entries(&'a self, j: usize) -> Self::ColumnEntries; } pub trait CsStorage: for<'a> CsStorageIter<'a, N, R, C> { fn shape(&self) -> (R, C); fn nvalues(&self) -> usize; unsafe fn row_index_unchecked(&self, i: usize) -> usize; unsafe fn get_value_unchecked(&self, i: usize) -> &N; fn get_value(&self, i: usize) -> &N; fn row_index(&self, i: usize) -> usize; } pub trait CsStorageMut: CsStorage { /* /// Sets the length of this column without initializing its values and row indices. /// /// If the given length is larger than the current one, uninitialized entries are /// added at the end of the column `i`. This will effectively shift all the matrix entries /// of the columns at indices `j` with `j > i`. fn set_column_len(&mut self, i: usize, len: usize); */ } #[derive(Clone, Debug)] pub struct CsVecStorage where DefaultAllocator: Allocator, { shape: (R, C), p: VectorN, i: Vec, vals: Vec, } impl CsVecStorage where DefaultAllocator: Allocator, { #[inline] fn column_range(&self, j: usize) -> Range { let end = if j + 1 == self.p.len() { self.nvalues() } else { self.p[j + 1] }; self.p[j]..end } } impl<'a, N: Scalar, R: Dim, C: Dim> CsStorageIter<'a, N, R, C> for CsVecStorage where DefaultAllocator: Allocator, { type ColumnEntries = iter::Zip>, iter::Cloned>>; #[inline] fn column_entries(&'a self, j: usize) -> Self::ColumnEntries { let rng = self.column_range(j); self.i[rng.clone()] .iter() .cloned() .zip(self.vals[rng].iter().cloned()) } } impl CsStorage for CsVecStorage where DefaultAllocator: Allocator, { #[inline] fn shape(&self) -> (R, C) { self.shape } #[inline] fn nvalues(&self) -> usize { self.vals.len() } #[inline] fn row_index(&self, i: usize) -> usize { self.i[i] } #[inline] unsafe fn row_index_unchecked(&self, i: usize) -> usize { *self.i.get_unchecked(i) } #[inline] unsafe fn get_value_unchecked(&self, i: usize) -> &N { self.vals.get_unchecked(i) } #[inline] fn get_value(&self, i: usize) -> &N { &self.vals[i] } } /* pub struct CsSliceStorage<'a, N: Scalar, R: Dim, C: DimAdd> { shape: (R, C), p: VectorSlice>, i: VectorSlice, vals: VectorSlice, }*/ /// A compressed sparse column matrix. #[derive(Clone, Debug)] pub struct CsMatrix = CsVecStorage> { pub data: S, _phantoms: PhantomData<(N, R, C)>, } pub type CsVector> = CsMatrix; impl CsMatrix where DefaultAllocator: Allocator, { pub fn new_uninitialized_generic(nrows: R, ncols: C, nvals: usize) -> Self { let mut i = Vec::with_capacity(nvals); unsafe { i.set_len(nvals); } i.shrink_to_fit(); let mut vals = Vec::with_capacity(nvals); unsafe { vals.set_len(nvals); } vals.shrink_to_fit(); CsMatrix { data: CsVecStorage { shape: (nrows, ncols), p: unsafe { VectorN::new_uninitialized_generic(ncols, U1) }, i, vals, }, _phantoms: PhantomData, } } } fn cumsum(a: &mut VectorN, b: &mut VectorN) -> usize where DefaultAllocator: Allocator, { assert!(a.len() == b.len()); let mut sum = 0; for i in 0..a.len() { b[i] = sum; sum += a[i]; a[i] = b[i]; } sum } impl> CsMatrix { pub fn nvalues(&self) -> usize { self.data.nvalues() } pub fn transpose(&self) -> CsMatrix where DefaultAllocator: Allocator, { let (nrows, ncols) = self.data.shape(); let nvals = self.nvalues(); let mut res = CsMatrix::new_uninitialized_generic(ncols, nrows, nvals); let mut workspace = Vector::zeros_generic(nrows, U1); // Compute p. for i in 0..nvals { let row_id = self.data.row_index(i); workspace[row_id] += 1; } let _ = cumsum(&mut workspace, &mut res.data.p); // Fill the result. for j in 0..ncols.value() { for (row_id, value) in self.data.column_entries(j) { let shift = workspace[row_id]; res.data.vals[shift] = value; res.data.i[shift] = j; workspace[row_id] += 1; } } res } fn scatter( &self, j: usize, beta: N, timestamps: &mut [usize], timestamp: usize, workspace: &mut [N], mut nz: usize, res: &mut CsMatrix, ) -> usize where N: ClosedAdd + ClosedMul, DefaultAllocator: Allocator, { for (i, val) in self.data.column_entries(j) { if timestamps[i] < timestamp { timestamps[i] = timestamp; res.data.i[nz] = i; nz += 1; workspace[i] = val * beta; } else { workspace[i] += val * beta; } } nz } } impl> CsMatrix { pub fn solve_lower_triangular( &self, b: &Matrix, ) -> Option> where S2: Storage, DefaultAllocator: Allocator, ShapeConstraint: SameNumberOfRows, { let mut b = b.clone_owned(); if self.solve_lower_triangular_mut(&mut b) { Some(b) } else { None } } pub fn tr_solve_lower_triangular( &self, b: &Matrix, ) -> Option> where S2: Storage, DefaultAllocator: Allocator, ShapeConstraint: SameNumberOfRows, { let mut b = b.clone_owned(); if self.tr_solve_lower_triangular_mut(&mut b) { Some(b) } else { None } } pub fn solve_lower_triangular_mut( &self, b: &mut Matrix, ) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let (nrows, ncols) = self.data.shape(); assert_eq!(nrows.value(), ncols.value(), "The matrix must be square."); assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions."); for j2 in 0..b.ncols() { let mut b = b.column_mut(j2); for j in 0..ncols.value() { let mut column = self.data.column_entries(j); let mut diag_found = false; while let Some((i, val)) = column.next() { if i == j { if val.is_zero() { return false; } b[j] /= val; diag_found = true; break; } } if !diag_found { return false; } for (i, val) in column { b[i] -= b[j] * val; } } } true } pub fn tr_solve_lower_triangular_mut( &self, b: &mut Matrix, ) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let (nrows, ncols) = self.data.shape(); assert_eq!(nrows.value(), ncols.value(), "The matrix must be square."); assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions."); for j2 in 0..b.ncols() { let mut b = b.column_mut(j2); for j in (0..ncols.value()).rev() { let mut column = self.data.column_entries(j); let mut diag = None; while let Some((i, val)) = column.next() { if i == j { if val.is_zero() { return false; } diag = Some(val); break; } } if let Some(diag) = diag { for (i, val) in column { b[j] -= val * b[i]; } b[j] /= diag; } else { return false; } } } true } } /* impl CsVector { pub fn axpy(&mut self, alpha: N, x: CsVector, beta: N) { // First, compute the number of non-zero entries. let mut nnzero = 0; // Allocate a size large enough. self.data.set_column_len(0, nnzero); // Fill with the axpy. let mut i = self.nvalues(); let mut j = x.nvalues(); let mut k = nnzero - 1; let mut rid1 = self.data.row_index(0, i - 1); let mut rid2 = x.data.row_index(0, j - 1); while k > 0 { if rid1 == rid2 { self.data.set_row_index(0, k, rid1); self[k] = alpha * x[j] + beta * self[k]; i -= 1; j -= 1; } else if rid1 < rid2 { self.data.set_row_index(0, k, rid1); self[k] = beta * self[i]; i -= 1; } else { self.data.set_row_index(0, k, rid2); self[k] = alpha * x[j]; j -= 1; } k -= 1; } } } */ impl> Vector { pub fn axpy_cs(&mut self, alpha: N, x: &CsVector, beta: N) where S2: CsStorage, ShapeConstraint: DimEq, { if beta.is_zero() { for i in 0..x.nvalues() { unsafe { let k = x.data.row_index_unchecked(i); let y = self.vget_unchecked_mut(k); *y = alpha * *x.data.get_value_unchecked(i); } } } else { // Needed to be sure even components not present on `x` are multiplied. *self *= beta; for i in 0..x.nvalues() { unsafe { let k = x.data.row_index_unchecked(i); let y = self.vget_unchecked_mut(k); *y += alpha * *x.data.get_value_unchecked(i); } } } } /* pub fn gemv_sparse(&mut self, alpha: N, a: &CsMatrix, x: &DVector, beta: N) where S2: CsStorage { let col2 = a.column(0); let val = unsafe { *x.vget_unchecked(0) }; self.axpy_sparse(alpha * val, &col2, beta); for j in 1..ncols2 { let col2 = a.column(j); let val = unsafe { *x.vget_unchecked(j) }; self.axpy_sparse(alpha * val, &col2, N::one()); } } */ } impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix> for &'a CsMatrix where N: Scalar + ClosedAdd + ClosedMul + Zero, R1: Dim, C1: Dim, R2: Dim, C2: Dim, S1: CsStorage, S2: CsStorage, ShapeConstraint: AreMultipliable, DefaultAllocator: Allocator + Allocator + Allocator, { type Output = CsMatrix; fn mul(self, rhs: &'b CsMatrix) -> CsMatrix { let (nrows1, ncols1) = self.data.shape(); let (nrows2, ncols2) = rhs.data.shape(); assert_eq!( ncols1.value(), nrows2.value(), "Mismatched dimensions for matrix multiplication." ); let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.nvalues() + rhs.nvalues()); let mut timestamps = VectorN::zeros_generic(nrows1, U1); let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) }; let mut nz = 0; for j in 0..ncols2.value() { res.data.p[j] = nz; let new_size_bound = nz + nrows1.value(); res.data.i.resize(new_size_bound, 0); res.data.vals.resize(new_size_bound, N::zero()); for (i, val) in rhs.data.column_entries(j) { nz = self.scatter( i, val, timestamps.as_mut_slice(), j + 1, workspace.as_mut_slice(), nz, &mut res, ); } for p in res.data.p[j]..nz { res.data.vals[p] = workspace[res.data.i[p]] } } res.data.i.truncate(nz); res.data.i.shrink_to_fit(); res.data.vals.truncate(nz); res.data.vals.shrink_to_fit(); res } } impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix> for &'a CsMatrix where N: Scalar + ClosedAdd + ClosedMul + One, R1: Dim, C1: Dim, R2: Dim, C2: Dim, S1: CsStorage, S2: CsStorage, ShapeConstraint: DimEq + DimEq, DefaultAllocator: Allocator + Allocator + Allocator, { type Output = CsMatrix; fn add(self, rhs: &'b CsMatrix) -> CsMatrix { let (nrows1, ncols1) = self.data.shape(); let (nrows2, ncols2) = rhs.data.shape(); assert_eq!( (nrows1.value(), ncols1.value()), (nrows2.value(), ncols2.value()), "Mismatched dimensions for matrix sum." ); let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.nvalues() + rhs.nvalues()); let mut timestamps = VectorN::zeros_generic(nrows1, U1); let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) }; let mut nz = 0; for j in 0..ncols2.value() { res.data.p[j] = nz; nz = self.scatter( j, N::one(), timestamps.as_mut_slice(), j + 1, workspace.as_mut_slice(), nz, &mut res, ); nz = rhs.scatter( j, N::one(), timestamps.as_mut_slice(), j + 1, workspace.as_mut_slice(), nz, &mut res, ); for p in res.data.p[j]..nz { res.data.vals[p] = workspace[res.data.i[p]] } } res.data.i.truncate(nz); res.data.i.shrink_to_fit(); res.data.vals.truncate(nz); res.data.vals.shrink_to_fit(); res } } impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From> for MatrixMN where S: CsStorage, DefaultAllocator: Allocator, { fn from(m: CsMatrix) -> Self { let (nrows, ncols) = m.data.shape(); let mut res = MatrixMN::zeros_generic(nrows, ncols); for j in 0..ncols.value() { for (i, val) in m.data.column_entries(j) { res[(i, j)] = val; } } res } } impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From> for CsMatrix where S: Storage, DefaultAllocator: Allocator + Allocator, { fn from(m: Matrix) -> Self { let (nrows, ncols) = m.data.shape(); let nvalues = m.iter().filter(|e| !e.is_zero()).count(); let mut res = CsMatrix::new_uninitialized_generic(nrows, ncols, nvalues); let mut nz = 0; for j in 0..ncols.value() { let column = m.column(j); res.data.p[j] = nz; for i in 0..nrows.value() { if !column[i].is_zero() { res.data.i[nz] = i; res.data.vals[nz] = column[i]; nz += 1; } } } res } }