use approx::{AbsDiffEq, RelativeEq, UlpsEq}; use num::Zero; use std::fmt; use std::hash::{Hash, Hasher}; #[cfg(feature = "abomonation-serialize")] use std::io::{Result as IOResult, Write}; #[cfg(feature = "serde-serialize-no-std")] use crate::base::storage::InnerOwned; #[cfg(feature = "serde-serialize-no-std")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; #[cfg(feature = "abomonation-serialize")] use abomonation::Abomonation; use simba::scalar::{ClosedNeg, RealField}; use simba::simd::{SimdBool, SimdOption, SimdRealField}; use crate::base::dimension::{U1, U3, U4}; use crate::base::storage::{CStride, RStride}; use crate::base::{ Matrix3, Matrix4, MatrixSlice, MatrixSliceMut, Normed, Scalar, Unit, Vector3, Vector4, }; use crate::geometry::{Point3, Rotation}; /// A quaternion. See the type alias `UnitQuaternion = Unit` for a quaternion /// that may be used as a rotation. #[repr(transparent)] #[derive(Debug, Copy, Clone)] pub struct Quaternion { /// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order. pub coords: Vector4, } impl Hash for Quaternion { fn hash(&self, state: &mut H) { self.coords.hash(state) } } impl Eq for Quaternion {} impl PartialEq for Quaternion { #[inline] fn eq(&self, right: &Self) -> bool { self.coords == right.coords } } impl Default for Quaternion { fn default() -> Self { Quaternion { coords: Vector4::zeros(), } } } #[cfg(feature = "bytemuck")] unsafe impl bytemuck::Zeroable for Quaternion where Vector4: bytemuck::Zeroable {} #[cfg(feature = "bytemuck")] unsafe impl bytemuck::Pod for Quaternion where Vector4: bytemuck::Pod, T: Copy, { } #[cfg(feature = "abomonation-serialize")] impl Abomonation for Quaternion where Vector4: Abomonation, { unsafe fn entomb(&self, writer: &mut W) -> IOResult<()> { self.coords.entomb(writer) } fn extent(&self) -> usize { self.coords.extent() } unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> { self.coords.exhume(bytes) } } #[cfg(feature = "serde-serialize-no-std")] impl Serialize for Quaternion where Owned: Serialize, { fn serialize(&self, serializer: S) -> Result where S: Serializer, { self.coords.serialize(serializer) } } #[cfg(feature = "serde-serialize-no-std")] impl<'a, T> Deserialize<'a> for Quaternion where Owned: Deserialize<'a>, { fn deserialize(deserializer: Des) -> Result where Des: Deserializer<'a>, { let coords = Vector4::::deserialize(deserializer)?; Ok(Self::from(coords)) } } #[cfg(feature = "rkyv-serialize-no-std")] mod rkyv_impl { use super::Quaternion; use crate::base::Vector4; use rkyv::{offset_of, project_struct, Archive, Deserialize, Fallible, Serialize}; impl Archive for Quaternion { type Archived = Quaternion; type Resolver = as Archive>::Resolver; fn resolve( &self, pos: usize, resolver: Self::Resolver, out: &mut core::mem::MaybeUninit, ) { self.coords.resolve( pos + offset_of!(Self::Archived, coords), resolver, project_struct!(out: Self::Archived => coords), ); } } impl, S: Fallible + ?Sized> Serialize for Quaternion { fn serialize(&self, serializer: &mut S) -> Result { self.coords.serialize(serializer) } } impl Deserialize, D> for Quaternion where T::Archived: Deserialize, { fn deserialize(&self, deserializer: &mut D) -> Result, D::Error> { Ok(Quaternion { coords: self.coords.deserialize(deserializer)?, }) } } } impl Quaternion where T::Element: SimdRealField, { /// Moves this unit quaternion into one that owns its data. #[inline] #[deprecated(note = "This method is a no-op and will be removed in a future release.")] pub fn into_owned(self) -> Self { self } /// Clones this unit quaternion into one that owns its data. #[inline] #[deprecated(note = "This method is a no-op and will be removed in a future release.")] pub fn clone_owned(&self) -> Self { Self::from(self.coords.clone_owned()) } /// Normalizes this quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let q_normalized = q.normalize(); /// relative_eq!(q_normalized.norm(), 1.0); /// ``` #[inline] #[must_use = "Did you mean to use normalize_mut()?"] pub fn normalize(&self) -> Self { Self::from(self.coords.normalize()) } /// The imaginary part of this quaternion. #[inline] #[must_use] pub fn imag(&self) -> Vector3 { self.coords.xyz() } /// The conjugate of this quaternion. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let conj = q.conjugate(); /// assert!(conj.i == -2.0 && conj.j == -3.0 && conj.k == -4.0 && conj.w == 1.0); /// ``` #[inline] #[must_use = "Did you mean to use conjugate_mut()?"] pub fn conjugate(&self) -> Self { Self::from_parts(self.w, -self.imag()) } /// Linear interpolation between two quaternion. /// /// Computes `self * (1 - t) + other * t`. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let q2 = Quaternion::new(10.0, 20.0, 30.0, 40.0); /// /// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(1.9, 3.8, 5.7, 7.6)); /// ``` #[inline] #[must_use] pub fn lerp(&self, other: &Self, t: T) -> Self { self * (T::one() - t) + other * t } /// The vector part `(i, j, k)` of this quaternion. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_eq!(q.vector()[0], 2.0); /// assert_eq!(q.vector()[1], 3.0); /// assert_eq!(q.vector()[2], 4.0); /// ``` #[inline] #[must_use] pub fn vector(&self) -> MatrixSlice<'_, T, U3, U1, RStride, CStride> { self.coords.fixed_rows::<3>(0) } /// The scalar part `w` of this quaternion. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_eq!(q.scalar(), 1.0); /// ``` #[inline] #[must_use] pub fn scalar(&self) -> T { self.coords[3] } /// Reinterprets this quaternion as a 4D vector. /// /// # Example /// ``` /// # use nalgebra::{Vector4, Quaternion}; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// // Recall that the quaternion is stored internally as (i, j, k, w) /// // while the crate::new constructor takes the arguments as (w, i, j, k). /// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0)); /// ``` #[inline] #[must_use] pub fn as_vector(&self) -> &Vector4 { &self.coords } /// The norm of this quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_relative_eq!(q.norm(), 5.47722557, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn norm(&self) -> T { self.coords.norm() } /// A synonym for the norm of this quaternion. /// /// Aka the length. /// This is the same as `.norm()` /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_relative_eq!(q.magnitude(), 5.47722557, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn magnitude(&self) -> T { self.norm() } /// The squared norm of this quaternion. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_eq!(q.magnitude_squared(), 30.0); /// ``` #[inline] #[must_use] pub fn norm_squared(&self) -> T { self.coords.norm_squared() } /// A synonym for the squared norm of this quaternion. /// /// Aka the squared length. /// This is the same as `.norm_squared()` /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_eq!(q.magnitude_squared(), 30.0); /// ``` #[inline] #[must_use] pub fn magnitude_squared(&self) -> T { self.norm_squared() } /// The dot product of two quaternions. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let q2 = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// assert_eq!(q1.dot(&q2), 70.0); /// ``` #[inline] #[must_use] pub fn dot(&self, rhs: &Self) -> T { self.coords.dot(&rhs.coords) } } impl Quaternion where T::Element: SimdRealField, { /// Inverts this quaternion if it is not zero. /// /// This method also does not works with SIMD components (see `simd_try_inverse` instead). /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let inv_q = q.try_inverse(); /// /// assert!(inv_q.is_some()); /// assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity()); /// /// //Non-invertible case /// let q = Quaternion::new(0.0, 0.0, 0.0, 0.0); /// let inv_q = q.try_inverse(); /// /// assert!(inv_q.is_none()); /// ``` #[inline] #[must_use = "Did you mean to use try_inverse_mut()?"] pub fn try_inverse(&self) -> Option where T: RealField, { let mut res = *self; if res.try_inverse_mut() { Some(res) } else { None } } /// Attempt to inverse this quaternion. /// /// This method also works with SIMD components. #[inline] #[must_use = "Did you mean to use try_inverse_mut()?"] pub fn simd_try_inverse(&self) -> SimdOption { let norm_squared = self.norm_squared(); let ge = norm_squared.simd_ge(T::simd_default_epsilon()); SimdOption::new(self.conjugate() / norm_squared, ge) } /// Calculates the inner product (also known as the dot product). /// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel /// Formula 4.89. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let expected = Quaternion::new(-20.0, 0.0, 0.0, 0.0); /// let result = a.inner(&b); /// assert_relative_eq!(expected, result, epsilon = 1.0e-5); #[inline] #[must_use] pub fn inner(&self, other: &Self) -> Self { (self * other + other * self).half() } /// Calculates the outer product (also known as the wedge product). /// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel /// Formula 4.89. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let expected = Quaternion::new(0.0, -5.0, 18.0, -11.0); /// let result = a.outer(&b); /// assert_relative_eq!(expected, result, epsilon = 1.0e-5); /// ``` #[inline] #[must_use] pub fn outer(&self, other: &Self) -> Self { #[allow(clippy::eq_op)] (self * other - other * self).half() } /// Calculates the projection of `self` onto `other` (also known as the parallel). /// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel /// Formula 4.94. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let expected = Quaternion::new(0.0, 3.333333333333333, 1.3333333333333333, 0.6666666666666666); /// let result = a.project(&b).unwrap(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-5); /// ``` #[inline] #[must_use] pub fn project(&self, other: &Self) -> Option where T: RealField, { self.inner(other).right_div(other) } /// Calculates the rejection of `self` from `other` (also known as the perpendicular). /// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel /// Formula 4.94. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let expected = Quaternion::new(0.0, -1.3333333333333333, 1.6666666666666665, 3.3333333333333335); /// let result = a.reject(&b).unwrap(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-5); /// ``` #[inline] #[must_use] pub fn reject(&self, other: &Self) -> Option where T: RealField, { self.outer(other).right_div(other) } /// The polar decomposition of this quaternion. /// /// Returns, from left to right: the quaternion norm, the half rotation angle, the rotation /// axis. If the rotation angle is zero, the rotation axis is set to `None`. /// /// # Example /// ``` /// # use std::f32; /// # use nalgebra::{Vector3, Quaternion}; /// let q = Quaternion::new(0.0, 5.0, 0.0, 0.0); /// let (norm, half_ang, axis) = q.polar_decomposition(); /// assert_eq!(norm, 5.0); /// assert_eq!(half_ang, f32::consts::FRAC_PI_2); /// assert_eq!(axis, Some(Vector3::x_axis())); /// ``` #[must_use] pub fn polar_decomposition(&self) -> (T, T, Option>>) where T: RealField, { if let Some((q, n)) = Unit::try_new_and_get(*self, T::zero()) { if let Some(axis) = Unit::try_new(self.vector().clone_owned(), T::zero()) { let angle = q.angle() / crate::convert(2.0f64); (n, angle, Some(axis)) } else { (n, T::zero(), None) } } else { (T::zero(), T::zero(), None) } } /// Compute the natural logarithm of a quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(2.0, 5.0, 0.0, 0.0); /// assert_relative_eq!(q.ln(), Quaternion::new(1.683647, 1.190289, 0.0, 0.0), epsilon = 1.0e-6) /// ``` #[inline] #[must_use] pub fn ln(&self) -> Self { let n = self.norm(); let v = self.vector(); let s = self.scalar(); Self::from_parts(n.simd_ln(), v.normalize() * (s / n).simd_acos()) } /// Compute the exponential of a quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0); /// assert_relative_eq!(q.exp(), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5) /// ``` #[inline] #[must_use] pub fn exp(&self) -> Self { self.exp_eps(T::simd_default_epsilon()) } /// Compute the exponential of a quaternion. Returns the identity if the vector part of this quaternion /// has a norm smaller than `eps`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0); /// assert_relative_eq!(q.exp_eps(1.0e-6), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5); /// /// // Singular case. /// let q = Quaternion::new(0.0000001, 0.0, 0.0, 0.0); /// assert_eq!(q.exp_eps(1.0e-6), Quaternion::identity()); /// ``` #[inline] #[must_use] pub fn exp_eps(&self, eps: T) -> Self { let v = self.vector(); let nn = v.norm_squared(); let le = nn.simd_le(eps * eps); le.if_else(Self::identity, || { let w_exp = self.scalar().simd_exp(); let n = nn.simd_sqrt(); let nv = v * (w_exp * n.simd_sin() / n); Self::from_parts(w_exp * n.simd_cos(), nv) }) } /// Raise the quaternion to a given floating power. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// assert_relative_eq!(q.powf(1.5), Quaternion::new( -6.2576659, 4.1549037, 6.2323556, 8.3098075), epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn powf(&self, n: T) -> Self { (self.ln() * n).exp() } /// Transforms this quaternion into its 4D vector form (Vector part, Scalar part). /// /// # Example /// ``` /// # use nalgebra::{Quaternion, Vector4}; /// let mut q = Quaternion::identity(); /// *q.as_vector_mut() = Vector4::new(1.0, 2.0, 3.0, 4.0); /// assert!(q.i == 1.0 && q.j == 2.0 && q.k == 3.0 && q.w == 4.0); /// ``` #[inline] pub fn as_vector_mut(&mut self) -> &mut Vector4 { &mut self.coords } /// The mutable vector part `(i, j, k)` of this quaternion. /// /// # Example /// ``` /// # use nalgebra::{Quaternion, Vector4}; /// let mut q = Quaternion::identity(); /// { /// let mut v = q.vector_mut(); /// v[0] = 2.0; /// v[1] = 3.0; /// v[2] = 4.0; /// } /// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0); /// ``` #[inline] pub fn vector_mut( &mut self, ) -> MatrixSliceMut<'_, T, U3, U1, RStride, CStride> { self.coords.fixed_rows_mut::<3>(0) } /// Replaces this quaternion by its conjugate. /// /// # Example /// ``` /// # use nalgebra::Quaternion; /// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// q.conjugate_mut(); /// assert!(q.i == -2.0 && q.j == -3.0 && q.k == -4.0 && q.w == 1.0); /// ``` #[inline] pub fn conjugate_mut(&mut self) { self.coords[0] = -self.coords[0]; self.coords[1] = -self.coords[1]; self.coords[2] = -self.coords[2]; } /// Inverts this quaternion in-place if it is not zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let mut q = Quaternion::new(1.0f32, 2.0, 3.0, 4.0); /// /// assert!(q.try_inverse_mut()); /// assert_relative_eq!(q * Quaternion::new(1.0, 2.0, 3.0, 4.0), Quaternion::identity()); /// /// //Non-invertible case /// let mut q = Quaternion::new(0.0f32, 0.0, 0.0, 0.0); /// assert!(!q.try_inverse_mut()); /// ``` #[inline] pub fn try_inverse_mut(&mut self) -> T::SimdBool { let norm_squared = self.norm_squared(); let ge = norm_squared.simd_ge(T::simd_default_epsilon()); *self = ge.if_else(|| self.conjugate() / norm_squared, || *self); ge } /// Normalizes this quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// q.normalize_mut(); /// assert_relative_eq!(q.norm(), 1.0); /// ``` #[inline] pub fn normalize_mut(&mut self) -> T { self.coords.normalize_mut() } /// Calculates square of a quaternion. #[inline] #[must_use] pub fn squared(&self) -> Self { self * self } /// Divides quaternion into two. #[inline] #[must_use] pub fn half(&self) -> Self { self / crate::convert(2.0f64) } /// Calculates square root. #[inline] #[must_use] pub fn sqrt(&self) -> Self { self.powf(crate::convert(0.5)) } /// Check if the quaternion is pure. /// /// A quaternion is pure if it has no real part (`self.w == 0.0`). #[inline] #[must_use] pub fn is_pure(&self) -> bool { self.w.is_zero() } /// Convert quaternion to pure quaternion. #[inline] #[must_use] pub fn pure(&self) -> Self { Self::from_imag(self.imag()) } /// Left quaternionic division. /// /// Calculates B-1 * A where A = self, B = other. #[inline] #[must_use] pub fn left_div(&self, other: &Self) -> Option where T: RealField, { other.try_inverse().map(|inv| inv * self) } /// Right quaternionic division. /// /// Calculates A * B-1 where A = self, B = other. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let a = Quaternion::new(0.0, 1.0, 2.0, 3.0); /// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0); /// let result = a.right_div(&b).unwrap(); /// let expected = Quaternion::new(0.4, 0.13333333333333336, -0.4666666666666667, 0.26666666666666666); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn right_div(&self, other: &Self) -> Option where T: RealField, { other.try_inverse().map(|inv| self * inv) } /// Calculates the quaternionic cosinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(58.93364616794395, -34.086183690465596, -51.1292755356984, -68.17236738093119); /// let result = input.cos(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn cos(&self) -> Self { let z = self.imag().magnitude(); let w = -self.w.simd_sin() * z.simd_sinhc(); Self::from_parts(self.w.simd_cos() * z.simd_cosh(), self.imag() * w) } /// Calculates the quaternionic arccosinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let result = input.cos().acos(); /// assert_relative_eq!(input, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn acos(&self) -> Self { let u = Self::from_imag(self.imag().normalize()); let identity = Self::identity(); let z = (self + (self.squared() - identity).sqrt()).ln(); -(u * z) } /// Calculates the quaternionic sinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(91.78371578403467, 21.886486853029176, 32.82973027954377, 43.77297370605835); /// let result = input.sin(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn sin(&self) -> Self { let z = self.imag().magnitude(); let w = self.w.simd_cos() * z.simd_sinhc(); Self::from_parts(self.w.simd_sin() * z.simd_cosh(), self.imag() * w) } /// Calculates the quaternionic arcsinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let result = input.sin().asin(); /// assert_relative_eq!(input, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn asin(&self) -> Self { let u = Self::from_imag(self.imag().normalize()); let identity = Self::identity(); let z = ((u * self) + (identity - self.squared()).sqrt()).ln(); -(u * z) } /// Calculates the quaternionic tangent. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(0.00003821631725009489, 0.3713971716439371, 0.5570957574659058, 0.7427943432878743); /// let result = input.tan(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn tan(&self) -> Self where T: RealField, { self.sin().right_div(&self.cos()).unwrap() } /// Calculates the quaternionic arctangent. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let result = input.tan().atan(); /// assert_relative_eq!(input, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn atan(&self) -> Self where T: RealField, { let u = Self::from_imag(self.imag().normalize()); let num = u + self; let den = u - self; let fr = num.right_div(&den).unwrap(); let ln = fr.ln(); (u.half()) * ln } /// Calculates the hyperbolic quaternionic sinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(0.7323376060463428, -0.4482074499805421, -0.6723111749708133, -0.8964148999610843); /// let result = input.sinh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn sinh(&self) -> Self { (self.exp() - (-self).exp()).half() } /// Calculates the hyperbolic quaternionic arcsinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(2.385889902585242, 0.514052600662788, 0.7710789009941821, 1.028105201325576); /// let result = input.asinh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn asinh(&self) -> Self { let identity = Self::identity(); (self + (identity + self.squared()).sqrt()).ln() } /// Calculates the hyperbolic quaternionic cosinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(0.9615851176369566, -0.3413521745610167, -0.5120282618415251, -0.6827043491220334); /// let result = input.cosh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn cosh(&self) -> Self { (self.exp() + (-self).exp()).half() } /// Calculates the hyperbolic quaternionic arccosinus. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(2.4014472020074007, 0.5162761016176176, 0.7744141524264264, 1.0325522032352352); /// let result = input.acosh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn acosh(&self) -> Self { let identity = Self::identity(); (self + (self + identity).sqrt() * (self - identity).sqrt()).ln() } /// Calculates the hyperbolic quaternionic tangent. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(1.0248695360556623, -0.10229568178876419, -0.1534435226831464, -0.20459136357752844); /// let result = input.tanh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn tanh(&self) -> Self where T: RealField, { self.sinh().right_div(&self.cosh()).unwrap() } /// Calculates the hyperbolic quaternionic arctangent. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Quaternion; /// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let expected = Quaternion::new(0.03230293287000163, 0.5173453683196951, 0.7760180524795426, 1.0346907366393903); /// let result = input.atanh(); /// assert_relative_eq!(expected, result, epsilon = 1.0e-7); /// ``` #[inline] #[must_use] pub fn atanh(&self) -> Self { let identity = Self::identity(); ((identity + self).ln() - (identity - self).ln()).half() } } impl> AbsDiffEq for Quaternion { type Epsilon = T; #[inline] fn default_epsilon() -> Self::Epsilon { T::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.as_vector().abs_diff_eq(other.as_vector(), epsilon) || // Account for the double-covering of S², i.e. q = -q self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-*b, epsilon)) } } impl> RelativeEq for Quaternion { #[inline] fn default_max_relative() -> Self::Epsilon { T::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.as_vector().relative_eq(other.as_vector(), epsilon, max_relative) || // Account for the double-covering of S², i.e. q = -q self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.relative_eq(&-*b, epsilon, max_relative)) } } impl> UlpsEq for Quaternion { #[inline] fn default_max_ulps() -> u32 { T::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.as_vector().ulps_eq(other.as_vector(), epsilon, max_ulps) || // Account for the double-covering of S², i.e. q = -q. self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.ulps_eq(&-*b, epsilon, max_ulps)) } } impl fmt::Display for Quaternion { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "Quaternion {} − ({}, {}, {})", self[3], self[0], self[1], self[2] ) } } /// A unit quaternions. May be used to represent a rotation. pub type UnitQuaternion = Unit>; impl PartialEq for UnitQuaternion { #[inline] fn eq(&self, rhs: &Self) -> bool { self.coords == rhs.coords || // Account for the double-covering of S², i.e. q = -q self.coords.iter().zip(rhs.coords.iter()).all(|(a, b)| *a == -b.inlined_clone()) } } impl Eq for UnitQuaternion {} impl Normed for Quaternion { type Norm = T::SimdRealField; #[inline] fn norm(&self) -> T::SimdRealField { self.coords.norm() } #[inline] fn norm_squared(&self) -> T::SimdRealField { self.coords.norm_squared() } #[inline] fn scale_mut(&mut self, n: Self::Norm) { self.coords.scale_mut(n) } #[inline] fn unscale_mut(&mut self, n: Self::Norm) { self.coords.unscale_mut(n) } } impl UnitQuaternion where T::Element: SimdRealField, { /// The rotation angle in \[0; pi\] of this unit quaternion. /// /// # Example /// ``` /// # use nalgebra::{Unit, UnitQuaternion, Vector3}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); /// assert_eq!(rot.angle(), 1.78); /// ``` #[inline] #[must_use] pub fn angle(&self) -> T { let w = self.quaternion().scalar().simd_abs(); self.quaternion().imag().norm().simd_atan2(w) * crate::convert(2.0f64) } /// The underlying quaternion. /// /// Same as `self.as_ref()`. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Quaternion}; /// let axis = UnitQuaternion::identity(); /// assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0)); /// ``` #[inline] #[must_use] pub fn quaternion(&self) -> &Quaternion { self.as_ref() } /// Compute the conjugate of this unit quaternion. /// /// # Example /// ``` /// # use nalgebra::{Unit, UnitQuaternion, Vector3}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); /// let conj = rot.conjugate(); /// assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78)); /// ``` #[inline] #[must_use = "Did you mean to use conjugate_mut()?"] pub fn conjugate(&self) -> Self { Self::new_unchecked(self.as_ref().conjugate()) } /// Inverts this quaternion if it is not zero. /// /// # Example /// ``` /// # use nalgebra::{Unit, UnitQuaternion, Vector3}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78); /// let inv = rot.inverse(); /// assert_eq!(rot * inv, UnitQuaternion::identity()); /// assert_eq!(inv * rot, UnitQuaternion::identity()); /// ``` #[inline] #[must_use = "Did you mean to use inverse_mut()?"] pub fn inverse(&self) -> Self { self.conjugate() } /// The rotation angle needed to make `self` and `other` coincide. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0); /// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1); /// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn angle_to(&self, other: &Self) -> T { let delta = self.rotation_to(other); delta.angle() } /// The unit quaternion needed to make `self` and `other` coincide. /// /// The result is such that: `self.rotation_to(other) * self == other`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0); /// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1); /// let rot_to = rot1.rotation_to(&rot2); /// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn rotation_to(&self, other: &Self) -> Self { other / self } /// Linear interpolation between two unit quaternions. /// /// The result is not normalized. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Quaternion}; /// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0)); /// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0)); /// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0)); /// ``` #[inline] #[must_use] pub fn lerp(&self, other: &Self, t: T) -> Quaternion { self.as_ref().lerp(other.as_ref(), t) } /// Normalized linear interpolation between two unit quaternions. /// /// This is the same as `self.lerp` except that the result is normalized. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Quaternion}; /// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0)); /// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0)); /// assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0))); /// ``` #[inline] #[must_use] pub fn nlerp(&self, other: &Self, t: T) -> Self { let mut res = self.lerp(other, t); let _ = res.normalize_mut(); Self::new_unchecked(res) } /// Spherical linear interpolation between two unit quaternions. /// /// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation /// is not well-defined). Use `.try_slerp` instead to avoid the panic. /// /// # Examples: /// /// ``` /// # use nalgebra::geometry::UnitQuaternion; /// /// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); /// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); /// /// let q = q1.slerp(&q2, 1.0 / 3.0); /// /// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0)); /// ``` #[inline] #[must_use] pub fn slerp(&self, other: &Self, t: T) -> Self where T: RealField, { self.try_slerp(other, t, T::default_epsilon()) .expect("Quaternion slerp: ambiguous configuration.") } /// Computes the spherical linear interpolation between two unit quaternions or returns `None` /// if both quaternions are approximately 180 degrees apart (in which case the interpolation is /// not well-defined). /// /// # Arguments /// * `self`: the first quaternion to interpolate from. /// * `other`: the second quaternion to interpolate toward. /// * `t`: the interpolation parameter. Should be between 0 and 1. /// * `epsilon`: the value below which the sinus of the angle separating both quaternion /// must be to return `None`. #[inline] #[must_use] pub fn try_slerp(&self, other: &Self, t: T, epsilon: T) -> Option where T: RealField, { let coords = if self.coords.dot(&other.coords) < T::zero() { Unit::new_unchecked(self.coords).try_slerp( &Unit::new_unchecked(-other.coords), t, epsilon, ) } else { Unit::new_unchecked(self.coords).try_slerp( &Unit::new_unchecked(other.coords), t, epsilon, ) }; coords.map(|q| Unit::new_unchecked(Quaternion::from(q.into_inner()))) } /// Compute the conjugate of this unit quaternion in-place. #[inline] pub fn conjugate_mut(&mut self) { self.as_mut_unchecked().conjugate_mut() } /// Inverts this quaternion if it is not zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axisangle = Vector3::new(0.1, 0.2, 0.3); /// let mut rot = UnitQuaternion::new(axisangle); /// rot.inverse_mut(); /// assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity()); /// assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity()); /// ``` #[inline] pub fn inverse_mut(&mut self) { self.as_mut_unchecked().conjugate_mut() } /// The rotation axis of this unit quaternion or `None` if the rotation is zero. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = UnitQuaternion::from_axis_angle(&axis, angle); /// assert_eq!(rot.axis(), Some(axis)); /// /// // Case with a zero angle. /// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0); /// assert!(rot.axis().is_none()); /// ``` #[inline] #[must_use] pub fn axis(&self) -> Option>> where T: RealField, { let v = if self.quaternion().scalar() >= T::zero() { self.as_ref().vector().clone_owned() } else { -self.as_ref().vector() }; Unit::try_new(v, T::zero()) } /// The rotation axis of this unit quaternion multiplied by the rotation angle. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axisangle = Vector3::new(0.1, 0.2, 0.3); /// let rot = UnitQuaternion::new(axisangle); /// assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn scaled_axis(&self) -> Vector3 where T: RealField, { if let Some(axis) = self.axis() { axis.into_inner() * self.angle() } else { Vector3::zero() } } /// The rotation axis and angle in ]0, pi] of this unit quaternion. /// /// Returns `None` if the angle is zero. /// /// # Example /// ``` /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = UnitQuaternion::from_axis_angle(&axis, angle); /// assert_eq!(rot.axis_angle(), Some((axis, angle))); /// /// // Case with a zero angle. /// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0); /// assert!(rot.axis_angle().is_none()); /// ``` #[inline] #[must_use] pub fn axis_angle(&self) -> Option<(Unit>, T)> where T: RealField, { self.axis().map(|axis| (axis, self.angle())) } /// Compute the exponential of a quaternion. /// /// Note that this function yields a `Quaternion` because it loses the unit property. #[inline] #[must_use] pub fn exp(&self) -> Quaternion { self.as_ref().exp() } /// Compute the natural logarithm of a quaternion. /// /// Note that this function yields a `Quaternion` because it loses the unit property. /// The vector part of the return value corresponds to the axis-angle representation (divided /// by 2.0) of this unit quaternion. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector3, UnitQuaternion}; /// let axisangle = Vector3::new(0.1, 0.2, 0.3); /// let q = UnitQuaternion::new(axisangle); /// assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn ln(&self) -> Quaternion where T: RealField, { if let Some(v) = self.axis() { Quaternion::from_imag(v.into_inner() * self.angle()) } else { Quaternion::zero() } } /// Raise the quaternion to a given floating power. /// /// This returns the unit quaternion that identifies a rotation with axis `self.axis()` and /// angle `self.angle() × n`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = UnitQuaternion::from_axis_angle(&axis, angle); /// let pow = rot.powf(2.0); /// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6); /// assert_eq!(pow.angle(), 2.4); /// ``` #[inline] #[must_use] pub fn powf(&self, n: T) -> Self where T: RealField, { if let Some(v) = self.axis() { Self::from_axis_angle(&v, self.angle() * n) } else { Self::identity() } } /// Builds a rotation matrix from this unit quaternion. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3, Matrix3}; /// let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); /// let rot = q.to_rotation_matrix(); /// let expected = Matrix3::new(0.8660254, -0.5, 0.0, /// 0.5, 0.8660254, 0.0, /// 0.0, 0.0, 1.0); /// /// assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn to_rotation_matrix(self) -> Rotation { let i = self.as_ref()[0]; let j = self.as_ref()[1]; let k = self.as_ref()[2]; let w = self.as_ref()[3]; let ww = w * w; let ii = i * i; let jj = j * j; let kk = k * k; let ij = i * j * crate::convert(2.0f64); let wk = w * k * crate::convert(2.0f64); let wj = w * j * crate::convert(2.0f64); let ik = i * k * crate::convert(2.0f64); let jk = j * k * crate::convert(2.0f64); let wi = w * i * crate::convert(2.0f64); Rotation::from_matrix_unchecked(Matrix3::new( ww + ii - jj - kk, ij - wk, wj + ik, wk + ij, ww - ii + jj - kk, jk - wi, ik - wj, wi + jk, ww - ii - jj + kk, )) } /// Converts this unit quaternion into its equivalent Euler angles. /// /// The angles are produced in the form (roll, pitch, yaw). #[inline] #[deprecated(note = "This is renamed to use `.euler_angles()`.")] pub fn to_euler_angles(self) -> (T, T, T) where T: RealField, { self.euler_angles() } /// Retrieves the euler angles corresponding to this unit quaternion. /// /// The angles are produced in the form (roll, pitch, yaw). /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::UnitQuaternion; /// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3); /// let euler = rot.euler_angles(); /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn euler_angles(&self) -> (T, T, T) where T: RealField, { self.to_rotation_matrix().euler_angles() } /// Converts this unit quaternion into its equivalent homogeneous transformation matrix. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3, Matrix4}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); /// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0, /// 0.5, 0.8660254, 0.0, 0.0, /// 0.0, 0.0, 1.0, 0.0, /// 0.0, 0.0, 0.0, 1.0); /// /// assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn to_homogeneous(self) -> Matrix4 { self.to_rotation_matrix().to_homogeneous() } /// Rotate a point by this unit quaternion. /// /// This is the same as the multiplication `self * pt`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3, Point3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); /// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0)); /// /// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn transform_point(&self, pt: &Point3) -> Point3 { self * pt } /// Rotate a vector by this unit quaternion. /// /// This is the same as the multiplication `self * v`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); /// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0)); /// /// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn transform_vector(&self, v: &Vector3) -> Vector3 { self * v } /// Rotate a point by the inverse of this unit quaternion. This may be /// cheaper than inverting the unit quaternion and transforming the /// point. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3, Point3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); /// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0)); /// /// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn inverse_transform_point(&self, pt: &Point3) -> Point3 { // TODO: would it be useful performancewise not to call inverse explicitly (i-e. implement // the inverse transformation explicitly here) ? self.inverse() * pt } /// Rotate a vector by the inverse of this unit quaternion. This may be /// cheaper than inverting the unit quaternion and transforming the /// vector. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2); /// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0)); /// /// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn inverse_transform_vector(&self, v: &Vector3) -> Vector3 { self.inverse() * v } /// Rotate a vector by the inverse of this unit quaternion. This may be /// cheaper than inverting the unit quaternion and transforming the /// vector. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{UnitQuaternion, Vector3}; /// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_2); /// let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis()); /// /// assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6); /// ``` #[inline] #[must_use] pub fn inverse_transform_unit_vector(&self, v: &Unit>) -> Unit> { self.inverse() * v } /// Appends to `self` a rotation given in the axis-angle form, using a linearized formulation. /// /// This is faster, but approximate, way to compute `UnitQuaternion::new(axisangle) * self`. #[inline] #[must_use] pub fn append_axisangle_linearized(&self, axisangle: &Vector3) -> Self { let half: T = crate::convert(0.5); let q1 = self.into_inner(); let q2 = Quaternion::from_imag(axisangle * half); Unit::new_normalize(q1 + q2 * q1) } } impl Default for UnitQuaternion { fn default() -> Self { Self::identity() } } impl fmt::Display for UnitQuaternion { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let Some(axis) = self.axis() { let axis = axis.into_inner(); write!( f, "UnitQuaternion angle: {} − axis: ({}, {}, {})", self.angle(), axis[0], axis[1], axis[2] ) } else { write!( f, "UnitQuaternion angle: {} − axis: (undefined)", self.angle() ) } } } impl> AbsDiffEq for UnitQuaternion { type Epsilon = T; #[inline] fn default_epsilon() -> Self::Epsilon { T::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.as_ref().abs_diff_eq(other.as_ref(), epsilon) } } impl> RelativeEq for UnitQuaternion { #[inline] fn default_max_relative() -> Self::Epsilon { T::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.as_ref() .relative_eq(other.as_ref(), epsilon, max_relative) } } impl> UlpsEq for UnitQuaternion { #[inline] fn default_max_ulps() -> u32 { T::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps) } }