use crate::csc::CscMatrix; use crate::csr::CsrMatrix; use crate::ops::serial::{ spadd_csc_prealloc, spadd_csr_prealloc, spadd_pattern, spmm_csc_dense, spmm_csc_pattern, spmm_csc_prealloc, spmm_csr_dense, spmm_csr_pattern, spmm_csr_prealloc, }; use crate::ops::Op; use nalgebra::allocator::{Allocator, InnerAllocator}; use nalgebra::base::storage::Storage; use nalgebra::constraint::{DimEq, ShapeConstraint}; use nalgebra::{ ClosedAdd, ClosedDiv, ClosedMul, ClosedSub, DefaultAllocator, Dim, Dynamic, Matrix, OMatrix, Scalar, U1, }; use num_traits::{One, Zero}; use std::ops::{Add, Div, DivAssign, Mul, MulAssign, Neg, Sub}; /// Helper macro for implementing binary operators for different matrix types /// See below for usage. macro_rules! impl_bin_op { ($trait:ident, $method:ident, <$($life:lifetime),* $(,)? $($scalar_type:ident $(: $bounds:path)?)?>($a:ident : $a_type:ty, $b:ident : $b_type:ty) -> $ret:ty $body:block) => { impl<$($life,)* $($scalar_type)?> $trait<$b_type> for $a_type where // Note: The Neg bound is currently required because we delegate e.g. // Sub to SpAdd with negative coefficients. This is not well-defined for // unsigned data types. $($scalar_type: $($bounds + )? Scalar + ClosedAdd + ClosedSub + ClosedMul + Zero + One + Neg + PartialEq)? { type Output = $ret; fn $method(self, $b: $b_type) -> Self::Output { let $a = self; $body } } }; } /// Implements a +/- b for all combinations of reference and owned matrices, for /// CsrMatrix or CscMatrix. macro_rules! impl_sp_plus_minus { // We first match on some special-case syntax, and forward to the actual implementation ($matrix_type:ident, $spadd_fn:ident, +) => { impl_sp_plus_minus!(Add, add, $matrix_type, $spadd_fn, +, T::one()); }; ($matrix_type:ident, $spadd_fn:ident, -) => { impl_sp_plus_minus!(Sub, sub, $matrix_type, $spadd_fn, -, -T::one()); }; ($trait:ident, $method:ident, $matrix_type:ident, $spadd_fn:ident, $sign:tt, $factor:expr) => { impl_bin_op!($trait, $method, <'a, T>(a: &'a $matrix_type, b: &'a $matrix_type) -> $matrix_type { // If both matrices have the same pattern, then we can immediately re-use it let pattern = spadd_pattern(a.pattern(), b.pattern()); let values = vec![T::zero(); pattern.nnz()]; // We are giving data that is valid by definition, so it is safe to unwrap below let mut result = $matrix_type::try_from_pattern_and_values(pattern, values) .unwrap(); $spadd_fn(T::zero(), &mut result, T::one(), Op::NoOp(&a)).unwrap(); $spadd_fn(T::one(), &mut result, $factor * T::one(), Op::NoOp(&b)).unwrap(); result }); impl_bin_op!($trait, $method, <'a, T>(a: $matrix_type, b: &'a $matrix_type) -> $matrix_type { &a $sign b }); impl_bin_op!($trait, $method, <'a, T>(a: &'a $matrix_type, b: $matrix_type) -> $matrix_type { a $sign &b }); impl_bin_op!($trait, $method, (a: $matrix_type, b: $matrix_type) -> $matrix_type { a $sign &b }); } } impl_sp_plus_minus!(CsrMatrix, spadd_csr_prealloc, +); impl_sp_plus_minus!(CsrMatrix, spadd_csr_prealloc, -); impl_sp_plus_minus!(CscMatrix, spadd_csc_prealloc, +); impl_sp_plus_minus!(CscMatrix, spadd_csc_prealloc, -); macro_rules! impl_mul { ($($args:tt)*) => { impl_bin_op!(Mul, mul, $($args)*); } } /// Implements a + b for all combinations of reference and owned matrices, for /// CsrMatrix or CscMatrix. macro_rules! impl_spmm { ($matrix_type:ident, $pattern_fn:expr, $spmm_fn:expr) => { impl_mul!(<'a, T>(a: &'a $matrix_type, b: &'a $matrix_type) -> $matrix_type { let pattern = $pattern_fn(a.pattern(), b.pattern()); let values = vec![T::zero(); pattern.nnz()]; let mut result = $matrix_type::try_from_pattern_and_values(pattern, values) .unwrap(); $spmm_fn(T::zero(), &mut result, T::one(), Op::NoOp(a), Op::NoOp(b)) .expect("Internal error: spmm failed (please debug)."); result }); impl_mul!(<'a, T>(a: &'a $matrix_type, b: $matrix_type) -> $matrix_type { a * &b}); impl_mul!(<'a, T>(a: $matrix_type, b: &'a $matrix_type) -> $matrix_type { &a * b}); impl_mul!((a: $matrix_type, b: $matrix_type) -> $matrix_type { &a * &b}); } } impl_spmm!(CsrMatrix, spmm_csr_pattern, spmm_csr_prealloc); // Need to switch order of operations for CSC pattern impl_spmm!(CscMatrix, spmm_csc_pattern, spmm_csc_prealloc); /// Implements Scalar * Matrix operations for *concrete* scalar types. The reason this is necessary /// is that we are not able to implement Mul> for all T generically due to orphan rules. macro_rules! impl_concrete_scalar_matrix_mul { ($matrix_type:ident, $($scalar_type:ty),*) => { // For each concrete scalar type, forward the implementation of scalar * matrix // to matrix * scalar, which we have already implemented through generics $( impl_mul!(<>(a: $scalar_type, b: $matrix_type<$scalar_type>) -> $matrix_type<$scalar_type> { b * a }); impl_mul!(<'a>(a: $scalar_type, b: &'a $matrix_type<$scalar_type>) -> $matrix_type<$scalar_type> { b * a }); impl_mul!(<'a>(a: &'a $scalar_type, b: $matrix_type<$scalar_type>) -> $matrix_type<$scalar_type> { b * (*a) }); impl_mul!(<'a>(a: &'a $scalar_type, b: &'a $matrix_type<$scalar_type>) -> $matrix_type<$scalar_type> { b * *a }); )* } } /// Implements multiplication between matrix and scalar for various matrix types macro_rules! impl_scalar_mul { ($matrix_type: ident) => { impl_mul!(<'a, T>(a: &'a $matrix_type, b: &'a T) -> $matrix_type { let values: Vec<_> = a.values() .iter() .map(|v_i| v_i.inlined_clone() * b.inlined_clone()) .collect(); $matrix_type::try_from_pattern_and_values(a.pattern().clone(), values).unwrap() }); impl_mul!(<'a, T>(a: &'a $matrix_type, b: T) -> $matrix_type { a * &b }); impl_mul!(<'a, T>(a: $matrix_type, b: &'a T) -> $matrix_type { let mut a = a; for value in a.values_mut() { *value = b.inlined_clone() * value.inlined_clone(); } a }); impl_mul!((a: $matrix_type, b: T) -> $matrix_type { a * &b }); impl_concrete_scalar_matrix_mul!( $matrix_type, i8, i16, i32, i64, isize, f32, f64); impl MulAssign for $matrix_type where T: Scalar + ClosedAdd + ClosedMul + Zero + One { fn mul_assign(&mut self, scalar: T) { for val in self.values_mut() { *val *= scalar.inlined_clone(); } } } impl<'a, T> MulAssign<&'a T> for $matrix_type where T: Scalar + ClosedAdd + ClosedMul + Zero + One { fn mul_assign(&mut self, scalar: &'a T) { for val in self.values_mut() { *val *= scalar.inlined_clone(); } } } } } impl_scalar_mul!(CsrMatrix); impl_scalar_mul!(CscMatrix); macro_rules! impl_neg { ($matrix_type:ident) => { impl Neg for $matrix_type where T: Scalar + Neg, { type Output = $matrix_type; fn neg(mut self) -> Self::Output { for v_i in self.values_mut() { *v_i = -v_i.inlined_clone(); } self } } impl<'a, T> Neg for &'a $matrix_type where T: Scalar + Neg, { type Output = $matrix_type; fn neg(self) -> Self::Output { // TODO: This is inefficient. Ideally we'd have a method that would let us // obtain both the sparsity pattern and values from the matrix, // and then modify the values before creating a new matrix from the pattern // and negated values. -self.clone() } } }; } impl_neg!(CsrMatrix); impl_neg!(CscMatrix); macro_rules! impl_div { ($matrix_type:ident) => { impl_bin_op!(Div, div, (matrix: $matrix_type, scalar: T) -> $matrix_type { let mut matrix = matrix; matrix /= scalar; matrix }); impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: $matrix_type, scalar: &T) -> $matrix_type { matrix / scalar.inlined_clone() }); impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: &'a $matrix_type, scalar: T) -> $matrix_type { let new_values = matrix.values() .iter() .map(|v_i| v_i.inlined_clone() / scalar.inlined_clone()) .collect(); $matrix_type::try_from_pattern_and_values(matrix.pattern().clone(), new_values) .unwrap() }); impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: &'a $matrix_type, scalar: &'a T) -> $matrix_type { matrix / scalar.inlined_clone() }); impl DivAssign for $matrix_type where T : Scalar + ClosedAdd + ClosedMul + ClosedDiv + Zero + One { fn div_assign(&mut self, scalar: T) { self.values_mut().iter_mut().for_each(|v_i| *v_i /= scalar.inlined_clone()); } } impl<'a, T> DivAssign<&'a T> for $matrix_type where T : Scalar + ClosedAdd + ClosedMul + ClosedDiv + Zero + One { fn div_assign(&mut self, scalar: &'a T) { *self /= scalar.inlined_clone(); } } } } impl_div!(CsrMatrix); impl_div!(CscMatrix); macro_rules! impl_spmm_cs_dense { ($matrix_type_name:ident, $spmm_fn:ident) => { // Implement ref-ref impl_spmm_cs_dense!(&'a $matrix_type_name, &'a Matrix, $spmm_fn, |lhs, rhs| { let (_, ncols) = rhs.data.shape(); let nrows = Dynamic::new(lhs.nrows()); let mut result = OMatrix::::zeros_generic(nrows, ncols); $spmm_fn(T::zero(), &mut result, T::one(), Op::NoOp(lhs), Op::NoOp(rhs)); result }); // Implement the other combinations by deferring to ref-ref impl_spmm_cs_dense!(&'a $matrix_type_name, Matrix, $spmm_fn, |lhs, rhs| { lhs * &rhs }); impl_spmm_cs_dense!($matrix_type_name, &'a Matrix, $spmm_fn, |lhs, rhs| { &lhs * rhs }); impl_spmm_cs_dense!($matrix_type_name, Matrix, $spmm_fn, |lhs, rhs| { &lhs * &rhs }); }; // Main body of the macro. The first pattern just forwards to this pattern but with // different arguments ($sparse_matrix_type:ty, $dense_matrix_type:ty, $spmm_fn:ident, |$lhs:ident, $rhs:ident| $body:tt) => { impl<'a, T, R, C, S> Mul<$dense_matrix_type> for $sparse_matrix_type where T: Scalar + ClosedMul + ClosedAdd + ClosedSub + ClosedDiv + Neg + Zero + One, R: Dim, C: Dim, S: Storage, DefaultAllocator: Allocator, // TODO: Is it possible to simplify these bounds? ShapeConstraint: // Bounds so that we can turn OMatrix into a DMatrixSliceMut DimEq>::Buffer as Storage>::RStride> + DimEq + DimEq>::Buffer as Storage>::CStride> // Bounds so that we can turn &Matrix into a DMatrixSlice + DimEq + DimEq + DimEq { // We need the column dimension to be generic, so that if RHS is a vector, then // we also get a vector (and not a matrix) type Output = OMatrix; fn mul(self, rhs: $dense_matrix_type) -> Self::Output { let $lhs = self; let $rhs = rhs; $body } } } } impl_spmm_cs_dense!(CsrMatrix, spmm_csr_dense); impl_spmm_cs_dense!(CscMatrix, spmm_csc_dense);