//! Construction of givens rotations. use num::{One, Zero}; use simba::scalar::ComplexField; use crate::base::constraint::{DimEq, ShapeConstraint}; use crate::base::dimension::{Dim, U2}; use crate::base::storage::{Storage, StorageMut}; use crate::base::{Matrix, Vector}; /// A Givens rotation. #[derive(Debug, Clone, Copy)] pub struct GivensRotation { c: T::RealField, s: T, } // Matrix = UnitComplex * Matrix impl GivensRotation { /// The Givents rotation that does nothing. pub fn identity() -> Self { Self { c: T::RealField::one(), s: T::zero(), } } /// Initializes a Givens rotation from its components. /// /// The components are copies as-is. It is not checked whether they describe /// an actually valid Givens rotation. pub fn new_unchecked(c: T::RealField, s: T) -> Self { Self { c, s } } /// Initializes a Givens rotation from its non-normalized cosine an sine components. pub fn new(c: T, s: T) -> (Self, T) { Self::try_new(c, s, T::RealField::zero()) .unwrap_or_else(|| (GivensRotation::identity(), T::zero())) } /// Initializes a Givens rotation form its non-normalized cosine an sine components. pub fn try_new(c: T, s: T, eps: T::RealField) -> Option<(Self, T)> { let (mod0, sign0) = c.to_exp(); let denom = (mod0.clone() * mod0.clone() + s.clone().modulus_squared()).sqrt(); if denom > eps { let norm = sign0.scale(denom.clone()); let c = mod0 / denom; let s = s.clone() / norm.clone(); Some((Self { c, s }, norm)) } else { None } } /// Computes the rotation `R` required such that the `y` component of `R * v` is zero. /// /// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm /// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`. pub fn cancel_y>(v: &Vector) -> Option<(Self, T)> { if !v[1].is_zero() { let (mod0, sign0) = v[0].clone().to_exp(); let denom = (mod0.clone() * mod0.clone() + v[1].clone().modulus_squared()).sqrt(); let c = mod0 / denom.clone(); let s = -v[1].clone() / sign0.clone().scale(denom.clone()); let r = sign0.scale(denom); Some((Self { c, s }, r)) } else { None } } /// Computes the rotation `R` required such that the `x` component of `R * v` is zero. /// /// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm /// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`. pub fn cancel_x>(v: &Vector) -> Option<(Self, T)> { if !v[0].is_zero() { let (mod1, sign1) = v[1].clone().to_exp(); let denom = (mod1.clone() * mod1.clone() + v[0].clone().modulus_squared()).sqrt(); let c = mod1 / denom.clone(); let s = (v[0].clone().conjugate() * sign1.clone()).unscale(denom.clone()); let r = sign1.scale(denom); Some((Self { c, s }, r)) } else { None } } /// The cos part of this roration. #[must_use] pub fn c(&self) -> T::RealField { self.c.clone() } /// The sin part of this roration. #[must_use] pub fn s(&self) -> T { self.s.clone() } /// The inverse of this givens rotation. #[must_use = "This function does not mutate self."] pub fn inverse(&self) -> Self { Self { c: self.c.clone(), s: -self.s.clone(), } } /// Performs the multiplication `rhs = self * rhs` in-place. pub fn rotate>( &self, rhs: &mut Matrix, ) where ShapeConstraint: DimEq, { assert_eq!( rhs.nrows(), 2, "Unit complex rotation: the input matrix must have exactly two rows." ); let s = self.s.clone(); let c = self.c.clone(); for j in 0..rhs.ncols() { unsafe { let a = rhs.get_unchecked((0, j)).clone(); let b = rhs.get_unchecked((1, j)).clone(); *rhs.get_unchecked_mut((0, j)) = a.clone().scale(c.clone()) - s.clone().conjugate() * b.clone(); *rhs.get_unchecked_mut((1, j)) = s.clone() * a + b.scale(c.clone()); } } } /// Performs the multiplication `lhs = lhs * self` in-place. pub fn rotate_rows>( &self, lhs: &mut Matrix, ) where ShapeConstraint: DimEq, { assert_eq!( lhs.ncols(), 2, "Unit complex rotation: the input matrix must have exactly two columns." ); let s = self.s.clone(); let c = self.c.clone(); // TODO: can we optimize that to iterate on one column at a time ? for j in 0..lhs.nrows() { unsafe { let a = lhs.get_unchecked((j, 0)).clone(); let b = lhs.get_unchecked((j, 1)).clone(); *lhs.get_unchecked_mut((j, 0)) = a.clone().scale(c.clone()) + s.clone() * b.clone(); *lhs.get_unchecked_mut((j, 1)) = -s.clone().conjugate() * a + b.scale(c.clone()); } } } }