#[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; use num::{Bounded, One, Zero}; use rand::distributions::{Distribution, Standard}; use rand::Rng; use alga::general::ClosedDiv; use base::allocator::Allocator; use base::dimension::{DimName, DimNameAdd, DimNameSum, U1, U2, U3, U4, U5, U6}; use base::{DefaultAllocator, Scalar, VectorN}; use geometry::Point; impl Point where DefaultAllocator: Allocator { /// Creates a new point with uninitialized coordinates. #[inline] pub unsafe fn new_uninitialized() -> Self { Self::from(VectorN::new_uninitialized()) } /// Creates a new point with all coordinates equal to zero. /// /// # Example /// /// ``` /// # use nalgebra::{Point2, Point3}; /// // This works in any dimension. /// // The explicit :: type annotation may not always be needed, /// // depending on the context of type inference. /// let pt = Point2::::origin(); /// assert!(pt.x == 0.0 && pt.y == 0.0); /// /// let pt = Point3::::origin(); /// assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0); /// ``` #[inline] pub fn origin() -> Self where N: Zero { Self::from(VectorN::from_element(N::zero())) } /// Creates a new point from a slice. /// /// # Example /// /// ``` /// # use nalgebra::{Point2, Point3}; /// let data = [ 1.0, 2.0, 3.0 ]; /// /// let pt = Point2::from_slice(&data[..2]); /// assert_eq!(pt, Point2::new(1.0, 2.0)); /// /// let pt = Point3::from_slice(&data); /// assert_eq!(pt, Point3::new(1.0, 2.0, 3.0)); /// ``` #[inline] pub fn from_slice(components: &[N]) -> Self { Self::from(VectorN::from_row_slice(components)) } /// Creates a new point from its homogeneous vector representation. /// /// In practice, this builds a D-dimensional points with the same first D component as `v` /// divided by the last component of `v`. Returns `None` if this divisor is zero. /// /// # Example /// /// ``` /// # use nalgebra::{Point2, Point3, Vector3, Vector4}; /// /// let coords = Vector4::new(1.0, 2.0, 3.0, 1.0); /// let pt = Point3::from_homogeneous(coords); /// assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0))); /// /// // All component of the result will be divided by the /// // last component of the vector, here 2.0. /// let coords = Vector4::new(1.0, 2.0, 3.0, 2.0); /// let pt = Point3::from_homogeneous(coords); /// assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5))); /// /// // Fails because the last component is zero. /// let coords = Vector4::new(1.0, 2.0, 3.0, 0.0); /// let pt = Point3::from_homogeneous(coords); /// assert!(pt.is_none()); /// /// // Works also in other dimensions. /// let coords = Vector3::new(1.0, 2.0, 1.0); /// let pt = Point2::from_homogeneous(coords); /// assert_eq!(pt, Some(Point2::new(1.0, 2.0))); /// ``` #[inline] pub fn from_homogeneous(v: VectorN>) -> Option where N: Scalar + Zero + One + ClosedDiv, D: DimNameAdd, DefaultAllocator: Allocator>, { if !v[D::dim()].is_zero() { let coords = v.fixed_slice::(0, 0) / v[D::dim()]; Some(Self::from(coords)) } else { None } } } /* * * Traits that build points. * */ impl Bounded for Point where DefaultAllocator: Allocator { #[inline] fn max_value() -> Self { Self::from(VectorN::max_value()) } #[inline] fn min_value() -> Self { Self::from(VectorN::min_value()) } } impl Distribution> for Standard where DefaultAllocator: Allocator, Standard: Distribution, { #[inline] fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Point { Point::from(rng.gen::>()) } } #[cfg(feature = "arbitrary")] impl Arbitrary for Point where DefaultAllocator: Allocator, >::Buffer: Send, { #[inline] fn arbitrary(g: &mut G) -> Self { Self::from(VectorN::arbitrary(g)) } } /* * * Small points construction from components. * */ macro_rules! componentwise_constructors_impl( ($($doc: expr; $D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$( impl Point where DefaultAllocator: Allocator { #[doc = "Initializes this point from its components."] #[doc = "# Example\n```"] #[doc = $doc] #[doc = "```"] #[inline] pub fn new($($args: N),*) -> Self { unsafe { let mut res = Self::new_uninitialized(); $( *res.get_unchecked_mut($irow) = $args; )* res } } } )*} ); componentwise_constructors_impl!( "# use nalgebra::Point1;\nlet p = Point1::new(1.0);\nassert!(p.x == 1.0);"; U1, x:0; "# use nalgebra::Point2;\nlet p = Point2::new(1.0, 2.0);\nassert!(p.x == 1.0 && p.y == 2.0);"; U2, x:0, y:1; "# use nalgebra::Point3;\nlet p = Point3::new(1.0, 2.0, 3.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);"; U3, x:0, y:1, z:2; "# use nalgebra::Point4;\nlet p = Point4::new(1.0, 2.0, 3.0, 4.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);"; U4, x:0, y:1, z:2, w:3; "# use nalgebra::Point5;\nlet p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);"; U5, x:0, y:1, z:2, w:3, a:4; "# use nalgebra::Point6;\nlet p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);"; U6, x:0, y:1, z:2, w:3, a:4, b:5; ); macro_rules! from_array_impl( ($($D: ty, $len: expr);*) => {$( impl From<[N; $len]> for Point { fn from (coords: [N; $len]) -> Self { Self { coords: coords.into() } } } )*} ); from_array_impl!(U1, 1; U2, 2; U3, 3; U4, 4; U5, 5; U6, 6);