use num::Zero; use allocator::Allocator; use ::{Real, Complex}; use storage::{Storage, StorageMut}; use base::{DefaultAllocator, Matrix, Dim, MatrixMN}; use constraint::{SameNumberOfRows, SameNumberOfColumns, ShapeConstraint}; // FIXME: this should be be a trait on alga? /// A trait for abstract matrix norms. /// /// This may be moved to the alga crate in the future. pub trait Norm { /// Apply this norm to the given matrix. fn norm(&self, m: &Matrix) -> N::Real where R: Dim, C: Dim, S: Storage; /// Use the metric induced by this norm to compute the metric distance between the two given matrices. fn metric_distance(&self, m1: &Matrix, m2: &Matrix) -> N::Real where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns; } /// Euclidean norm. pub struct EuclideanNorm; /// Lp norm. pub struct LpNorm(pub i32); /// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm. pub struct UniformNorm; impl Norm for EuclideanNorm { #[inline] fn norm(&self, m: &Matrix) -> N::Real where R: Dim, C: Dim, S: Storage { m.norm_squared().sqrt() } #[inline] fn metric_distance(&self, m1: &Matrix, m2: &Matrix) -> N::Real where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { m1.zip_fold(m2, N::Real::zero(), |acc, a, b| { let diff = a - b; acc + diff.modulus_squared() }).sqrt() } } impl Norm for LpNorm { #[inline] fn norm(&self, m: &Matrix) -> N::Real where R: Dim, C: Dim, S: Storage { m.fold(N::Real::zero(), |a, b| { a + b.modulus().powi(self.0) }).powf(::convert(1.0 / (self.0 as f64))) } #[inline] fn metric_distance(&self, m1: &Matrix, m2: &Matrix) -> N::Real where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { m1.zip_fold(m2, N::Real::zero(), |acc, a, b| { let diff = a - b; acc + diff.modulus().powi(self.0) }).powf(::convert(1.0 / (self.0 as f64))) } } impl Norm for UniformNorm { #[inline] fn norm(&self, m: &Matrix) -> N::Real where R: Dim, C: Dim, S: Storage { // NOTE: we don't use `m.amax()` here because for the complex // numbers this will return the max norm1 instead of the modulus. m.fold(N::Real::zero(), |acc, a| acc.max(a.modulus())) } #[inline] fn metric_distance(&self, m1: &Matrix, m2: &Matrix) -> N::Real where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { m1.zip_fold(m2, N::Real::zero(), |acc, a, b| { let val = (a - b).modulus(); if val > acc { val } else { acc } }) } } impl> Matrix { /// The squared L2 norm of this vector. #[inline] pub fn norm_squared(&self) -> N::Real { let mut res = N::Real::zero(); for i in 0..self.ncols() { let col = self.column(i); res += col.dotc(&col).real() } res } /// The L2 norm of this matrix. /// /// Use `.apply_norm` to apply a custom norm. #[inline] pub fn norm(&self) -> N::Real { self.norm_squared().sqrt() } /// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm. /// /// Use `.apply_metric_distance` to apply a custom norm. #[inline] pub fn metric_distance(&self, rhs: &Matrix) -> N::Real where R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { self.apply_metric_distance(rhs, &EuclideanNorm) } /// Uses the given `norm` to compute the norm of `self`. /// /// # Example /// /// ``` /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm}; /// /// let v = Vector3::new(1.0, 2.0, 3.0); /// assert_eq!(v.apply_norm(&UniformNorm), 3.0); /// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0); /// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm()); /// ``` #[inline] pub fn apply_norm(&self, norm: &impl Norm) -> N::Real { norm.norm(self) } /// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`. /// /// # Example /// /// ``` /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm}; /// /// let v1 = Vector3::new(1.0, 2.0, 3.0); /// let v2 = Vector3::new(10.0, 20.0, 30.0); /// /// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0); /// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0); /// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm()); /// ``` #[inline] pub fn apply_metric_distance(&self, rhs: &Matrix, norm: &impl Norm) -> N::Real where R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns { norm.metric_distance(self, rhs) } /// A synonym for the norm of this matrix. /// /// Aka the length. /// /// This function is simply implemented as a call to `norm()` #[inline] pub fn magnitude(&self) -> N::Real { self.norm() } /// A synonym for the squared norm of this matrix. /// /// Aka the squared length. /// /// This function is simply implemented as a call to `norm_squared()` #[inline] pub fn magnitude_squared(&self) -> N::Real { self.norm_squared() } /// Returns a normalized version of this matrix. #[inline] pub fn normalize(&self) -> MatrixMN where DefaultAllocator: Allocator { self.unscale(self.norm()) } /// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`. #[inline] pub fn try_normalize(&self, min_norm: N::Real) -> Option> where DefaultAllocator: Allocator { let n = self.norm(); if n <= min_norm { None } else { Some(self.unscale(n)) } } /// The Lp norm of this matrix. #[inline] pub fn lp_norm(&self, p: i32) -> N::Real { self.apply_norm(&LpNorm(p)) } } impl> Matrix { /// Normalizes this matrix in-place and returns its norm. #[inline] pub fn normalize_mut(&mut self) -> N::Real { let n = self.norm(); self.unscale_mut(n); n } /// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`. /// /// If the normalization succeeded, returns the old normal of this matrix. #[inline] pub fn try_normalize_mut(&mut self, min_norm: N::Real) -> Option { let n = self.norm(); if n <= min_norm { None } else { self.unscale_mut(n); Some(n) } } }