#![cfg(feature = "arbitrary")] use na::{DMatrix, Matrix2, Matrix3x5, Matrix4, Matrix5x3}; use core::helper::{RandScalar, RandComplex}; quickcheck! { fn bidiagonal(m: DMatrix>) -> bool { let m = m.map(|e| e.0); if m.len() == 0 { return true; } let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); println!("{}{}{}", &u, &d, &v_t); println!("{:.7}{:.7}", &u * &d * &v_t, m); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } fn bidiagonal_static_5_3(m: Matrix5x3>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); println!("{}{}{}", &u, &d, &v_t); println!("{:.7}{:.7}", &u * &d * &v_t, m); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } fn bidiagonal_static_3_5(m: Matrix3x5>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); println!("{}{}{}", &u, &d, &v_t); println!("{:.7}{:.7}", &u * &d * &v_t, m); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } fn bidiagonal_static_square(m: Matrix4>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); println!("{}{}{}", &u, &d, &v_t); println!("{:.7}{:.7}", &u * &d * &v_t, m); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } fn bidiagonal_static_square_2x2(m: Matrix2>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); println!("{}{}{}", &u, &d, &v_t); println!("{:.7}{:.7}", &u * &d * &v_t, m); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } } #[test] fn bidiagonal_identity() { let m = DMatrix::::identity(10, 10); let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); println!("u, s, v_t: {}{}{}", u, d, v_t); println!("recomp: {}", &u * &d * &v_t); assert_eq!(m, &u * d * &v_t); let m = DMatrix::::identity(10, 15); let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); println!("u, s, v_t: {}{}{}", u, d, v_t); assert_eq!(m, &u * d * &v_t); let m = DMatrix::::identity(15, 10); let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); println!("u, s, v_t: {}{}{}", u, d, v_t); assert_eq!(m, &u * d * &v_t); }