use approx::{AbsDiffEq, RelativeEq, UlpsEq}; use num::Zero; use std::fmt; use std::hash; #[cfg(feature = "serde-serialize-no-std")] use serde::{Deserialize, Serialize}; use simba::scalar::{RealField, SubsetOf}; use simba::simd::SimdRealField; use crate::base::allocator::Allocator; use crate::base::dimension::{DimNameAdd, DimNameSum, U1}; use crate::base::storage::Owned; use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar}; use crate::geometry::{AbstractRotation, Isometry, Point, Translation}; #[cfg(feature = "rkyv-serialize")] use rkyv::bytecheck; /// A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation. #[repr(C)] #[derive(Debug, Copy, Clone)] #[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))] #[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize-no-std", serde(bound(serialize = "T: Scalar + Serialize, R: Serialize, DefaultAllocator: Allocator>, Owned>: Serialize")) )] #[cfg_attr( feature = "serde-serialize-no-std", serde(bound(deserialize = "T: Scalar + Deserialize<'de>, R: Deserialize<'de>, DefaultAllocator: Allocator>, Owned>: Deserialize<'de>")) )] #[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))] #[cfg_attr( feature = "rkyv-serialize-no-std", derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize), archive( as = "Similarity", bound(archive = " T: rkyv::Archive, R: rkyv::Archive, Isometry: rkyv::Archive> ") ) )] pub struct Similarity { /// The part of this similarity that does not include the scaling factor. pub isometry: Isometry, scaling: T, } impl hash::Hash for Similarity where Owned>: hash::Hash, { fn hash(&self, state: &mut H) { self.isometry.hash(state); self.scaling.hash(state); } } impl Similarity where R: AbstractRotation, { /// Creates a new similarity from its rotational and translational parts. #[inline] pub fn from_parts(translation: Translation, rotation: R, scaling: T) -> Self { Self::from_isometry(Isometry::from_parts(translation, rotation), scaling) } /// Creates a new similarity from its rotational and translational parts. #[inline] pub fn from_isometry(isometry: Isometry, scaling: T) -> Self { assert!(!scaling.is_zero(), "The scaling factor must not be zero."); Self { isometry, scaling } } /// The scaling factor of this similarity transformation. #[inline] pub fn set_scaling(&mut self, scaling: T) { assert!( !scaling.is_zero(), "The similarity scaling factor must not be zero." ); self.scaling = scaling; } } impl Similarity { /// The scaling factor of this similarity transformation. #[inline] #[must_use] pub fn scaling(&self) -> T { self.scaling.clone() } } impl Similarity where T::Element: SimdRealField, R: AbstractRotation, { /// Creates a new similarity that applies only a scaling factor. #[inline] pub fn from_scaling(scaling: T) -> Self { Self::from_isometry(Isometry::identity(), scaling) } /// Inverts `self`. #[inline] #[must_use = "Did you mean to use inverse_mut()?"] pub fn inverse(&self) -> Self { let mut res = self.clone(); res.inverse_mut(); res } /// Inverts `self` in-place. #[inline] pub fn inverse_mut(&mut self) { self.scaling = T::one() / self.scaling.clone(); self.isometry.inverse_mut(); self.isometry.translation.vector *= self.scaling.clone(); } /// The similarity transformation that applies a scaling factor `scaling` before `self`. #[inline] #[must_use = "Did you mean to use prepend_scaling_mut()?"] pub fn prepend_scaling(&self, scaling: T) -> Self { assert!( !scaling.is_zero(), "The similarity scaling factor must not be zero." ); Self::from_isometry(self.isometry.clone(), self.scaling.clone() * scaling) } /// The similarity transformation that applies a scaling factor `scaling` after `self`. #[inline] #[must_use = "Did you mean to use append_scaling_mut()?"] pub fn append_scaling(&self, scaling: T) -> Self { assert!( !scaling.is_zero(), "The similarity scaling factor must not be zero." ); Self::from_parts( Translation::from(&self.isometry.translation.vector * scaling.clone()), self.isometry.rotation.clone(), self.scaling.clone() * scaling, ) } /// Sets `self` to the similarity transformation that applies a scaling factor `scaling` before `self`. #[inline] pub fn prepend_scaling_mut(&mut self, scaling: T) { assert!( !scaling.is_zero(), "The similarity scaling factor must not be zero." ); self.scaling *= scaling } /// Sets `self` to the similarity transformation that applies a scaling factor `scaling` after `self`. #[inline] pub fn append_scaling_mut(&mut self, scaling: T) { assert!( !scaling.is_zero(), "The similarity scaling factor must not be zero." ); self.isometry.translation.vector *= scaling.clone(); self.scaling *= scaling; } /// Appends to `self` the given translation in-place. #[inline] pub fn append_translation_mut(&mut self, t: &Translation) { self.isometry.append_translation_mut(t) } /// Appends to `self` the given rotation in-place. #[inline] pub fn append_rotation_mut(&mut self, r: &R) { self.isometry.append_rotation_mut(r) } /// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that /// lets `p` invariant. #[inline] pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point) { self.isometry.append_rotation_wrt_point_mut(r, p) } /// Appends in-place to `self` a rotation centered at the point with coordinates /// `self.translation`. #[inline] pub fn append_rotation_wrt_center_mut(&mut self, r: &R) { self.isometry.append_rotation_wrt_center_mut(r) } /// Transform the given point by this similarity. /// /// This is the same as the multiplication `self * pt`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Point3, Similarity3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// let translation = Vector3::new(1.0, 2.0, 3.0); /// let sim = Similarity3::new(translation, axisangle, 3.0); /// let transformed_point = sim.transform_point(&Point3::new(4.0, 5.0, 6.0)); /// assert_relative_eq!(transformed_point, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); /// ``` #[inline] #[must_use] pub fn transform_point(&self, pt: &Point) -> Point { self * pt } /// Transform the given vector by this similarity, ignoring the translational /// component. /// /// This is the same as the multiplication `self * t`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Similarity3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// let translation = Vector3::new(1.0, 2.0, 3.0); /// let sim = Similarity3::new(translation, axisangle, 3.0); /// let transformed_vector = sim.transform_vector(&Vector3::new(4.0, 5.0, 6.0)); /// assert_relative_eq!(transformed_vector, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5); /// ``` #[inline] #[must_use] pub fn transform_vector(&self, v: &SVector) -> SVector { self * v } /// Transform the given point by the inverse of this similarity. This may /// be cheaper than inverting the similarity and then transforming the /// given point. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Point3, Similarity3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// let translation = Vector3::new(1.0, 2.0, 3.0); /// let sim = Similarity3::new(translation, axisangle, 2.0); /// let transformed_point = sim.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0)); /// assert_relative_eq!(transformed_point, Point3::new(-1.5, 1.5, 1.5), epsilon = 1.0e-5); /// ``` #[inline] #[must_use] pub fn inverse_transform_point(&self, pt: &Point) -> Point { self.isometry.inverse_transform_point(pt) / self.scaling() } /// Transform the given vector by the inverse of this similarity, /// ignoring the translational component. This may be cheaper than /// inverting the similarity and then transforming the given vector. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Similarity3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// let translation = Vector3::new(1.0, 2.0, 3.0); /// let sim = Similarity3::new(translation, axisangle, 2.0); /// let transformed_vector = sim.inverse_transform_vector(&Vector3::new(4.0, 5.0, 6.0)); /// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.5, 2.0), epsilon = 1.0e-5); /// ``` #[inline] #[must_use] pub fn inverse_transform_vector(&self, v: &SVector) -> SVector { self.isometry.inverse_transform_vector(v) / self.scaling() } } // NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation // and makes it harder to use it, e.g., for Transform × Isometry implementation. // This is OK since all constructors of the isometry enforce the Rotation bound already (and // explicit struct construction is prevented by the private scaling factor). impl Similarity { /// Converts this similarity into its equivalent homogeneous transformation matrix. #[inline] #[must_use] pub fn to_homogeneous(&self) -> OMatrix, U1>, DimNameSum, U1>> where Const: DimNameAdd, R: SubsetOf, U1>, DimNameSum, U1>>>, DefaultAllocator: Allocator, U1>, DimNameSum, U1>>, { let mut res = self.isometry.to_homogeneous(); for e in res.fixed_view_mut::(0, 0).iter_mut() { *e *= self.scaling.clone() } res } } impl Eq for Similarity where R: AbstractRotation + Eq { } impl PartialEq for Similarity where R: AbstractRotation + PartialEq, { #[inline] fn eq(&self, right: &Self) -> bool { self.isometry == right.isometry && self.scaling == right.scaling } } impl AbsDiffEq for Similarity where R: AbstractRotation + AbsDiffEq, T::Epsilon: Clone, { type Epsilon = T::Epsilon; #[inline] fn default_epsilon() -> Self::Epsilon { T::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.isometry.abs_diff_eq(&other.isometry, epsilon.clone()) && self.scaling.abs_diff_eq(&other.scaling, epsilon) } } impl RelativeEq for Similarity where R: AbstractRotation + RelativeEq, T::Epsilon: Clone, { #[inline] fn default_max_relative() -> Self::Epsilon { T::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.isometry .relative_eq(&other.isometry, epsilon.clone(), max_relative.clone()) && self .scaling .relative_eq(&other.scaling, epsilon, max_relative) } } impl UlpsEq for Similarity where R: AbstractRotation + UlpsEq, T::Epsilon: Clone, { #[inline] fn default_max_ulps() -> u32 { T::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.isometry .ulps_eq(&other.isometry, epsilon.clone(), max_ulps) && self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps) } } /* * * Display * */ impl fmt::Display for Similarity where T: RealField + fmt::Display, R: AbstractRotation + fmt::Display, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let precision = f.precision().unwrap_or(3); writeln!(f, "Similarity {{")?; write!(f, "{:.*}", precision, self.isometry)?; write!(f, "Scaling: {:.*}", precision, self.scaling)?; writeln!(f, "}}") } }