use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::cmp::Ordering;
use std::fmt;
use std::hash;
#[cfg(feature = "rkyv-serialize")]
use rkyv::bytecheck;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use simba::simd::SimdPartialOrd;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::iter::{MatrixIter, MatrixIterMut};
use crate::base::{Const, DefaultAllocator, OVector, Scalar};
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
use std::mem::MaybeUninit;
/// A point in an euclidean space.
///
/// The difference between a point and a vector is only semantic. See [the user guide](https://www.nalgebra.org/docs/user_guide/points_and_transformations)
/// for details on the distinction. The most notable difference that vectors ignore translations.
/// In particular, an [`Isometry2`](crate::Isometry2) or [`Isometry3`](crate::Isometry3) will
/// transform points by applying a rotation and a translation on them. However, these isometries
/// will only apply rotations to vectors (when doing `isometry * vector`, the translation part of
/// the isometry is ignored).
///
/// # Construction
/// * [From individual components `new`…](#construction-from-individual-components)
/// * [Swizzling `xx`, `yxz`…](#swizzling)
/// * [Other construction methods `origin`, `from_slice`, `from_homogeneous`…](#other-construction-methods)
///
/// # Transformation
/// Transforming a point by an [Isometry](crate::Isometry), [rotation](crate::Rotation), etc. can be
/// achieved by multiplication, e.g., `isometry * point` or `rotation * point`. Some of these transformation
/// may have some other methods, e.g., `isometry.inverse_transform_point(&point)`. See the documentation
/// of said transformations for details.
#[repr(C)]
#[derive(Clone)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
archive(
as = "OPoint",
bound(archive = "
T: rkyv::Archive,
T::Archived: Scalar,
OVector: rkyv::Archive>,
DefaultAllocator: Allocator,
")
)
)]
pub struct OPoint
where
DefaultAllocator: Allocator,
{
/// The coordinates of this point, i.e., the shift from the origin.
pub coords: OVector,
}
impl fmt::Debug for OPoint
where
DefaultAllocator: Allocator,
{
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.coords.as_slice().fmt(formatter)
}
}
impl hash::Hash for OPoint
where
DefaultAllocator: Allocator,
{
fn hash(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl Copy for OPoint
where
DefaultAllocator: Allocator,
OVector: Copy,
{
}
#[cfg(feature = "cuda")]
unsafe impl cust_core::DeviceCopy for OPoint
where
DefaultAllocator: Allocator,
OVector: cust_core::DeviceCopy,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl bytemuck::Zeroable for OPoint
where
OVector: bytemuck::Zeroable,
DefaultAllocator: Allocator,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl bytemuck::Pod for OPoint
where
T: Copy,
OVector: bytemuck::Pod,
DefaultAllocator: Allocator,
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl Serialize for OPoint
where
DefaultAllocator: Allocator,
>::Buffer: Serialize,
{
fn serialize(&self, serializer: S) -> Result
where
S: Serializer,
{
self.coords.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: Scalar, D: DimName> Deserialize<'a> for OPoint
where
DefaultAllocator: Allocator,
>::Buffer: Deserialize<'a>,
{
fn deserialize(deserializer: Des) -> Result
where
Des: Deserializer<'a>,
{
let coords = OVector::::deserialize(deserializer)?;
Ok(Self::from(coords))
}
}
impl OPoint
where
DefaultAllocator: Allocator,
{
/// Returns a point containing the result of `f` applied to each of its entries.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let p = Point3::new(1.1, 2.1, 3.1);
/// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
/// ```
#[inline]
#[must_use]
pub fn map T2>(&self, f: F) -> OPoint
where
DefaultAllocator: Allocator,
{
self.coords.map(f).into()
}
/// Replaces each component of `self` by the result of a closure `f` applied on it.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let mut p = Point2::new(1.0, 2.0);
/// p.apply(|e| *e = *e * 10.0);
/// assert_eq!(p, Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let mut p = Point3::new(1.0, 2.0, 3.0);
/// p.apply(|e| *e = *e * 10.0);
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
/// ```
#[inline]
pub fn apply(&mut self, f: F) {
self.coords.apply(f)
}
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
/// end of it.
///
/// This is the same as `.into()`.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
/// let p = Point2::new(10.0, 20.0);
/// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
///
/// // This works in any dimension.
/// let p = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OVector>
where
T: One,
D: DimNameAdd,
DefaultAllocator: Allocator>,
{
// TODO: this is mostly a copy-past from Vector::push.
// But we can’t use Vector::push because of the DimAdd bound
// (which we don’t use because we use DimNameAdd).
// We should find a way to re-use Vector::push.
let len = self.len();
let mut res = crate::Matrix::uninit(DimNameSum::::name(), Const::<1>);
// This is basically a copy_from except that we warp the copied
// values into MaybeUninit.
res.generic_view_mut((0, 0), self.coords.shape_generic())
.zip_apply(&self.coords, |out, e| *out = MaybeUninit::new(e));
res[(len, 0)] = MaybeUninit::new(T::one());
// Safety: res has been fully initialized.
unsafe { res.assume_init() }
}
/// Linear interpolation between two points.
///
/// Returns `self * (1.0 - t) + rhs.coords * t`, i.e., the linear blend of the points
/// `self` and `rhs` using the scalar value `t`.
///
/// The value for a is not restricted to the range `[0, 1]`.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Point3;
/// let a = Point3::new(1.0, 2.0, 3.0);
/// let b = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(a.lerp(&b, 0.1), Point3::new(1.9, 3.8, 5.7));
/// ```
#[must_use]
pub fn lerp(&self, rhs: &OPoint, t: T) -> OPoint
where
T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul,
{
OPoint {
coords: self.coords.lerp(&rhs.coords, t),
}
}
/// Creates a new point with the given coordinates.
#[deprecated(note = "Use Point::from(vector) instead.")]
#[inline]
pub fn from_coordinates(coords: OVector) -> Self {
Self { coords }
}
/// The dimension of this point.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.len(), 2);
///
/// // This works in any dimension.
/// let p = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(p.len(), 3);
/// ```
#[inline]
#[must_use]
pub fn len(&self) -> usize {
self.coords.len()
}
/// Returns true if the point contains no elements.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert!(!p.is_empty());
/// ```
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// The stride of this point. This is the number of buffer element separating each component of
/// this point.
#[inline]
#[deprecated(note = "This methods is no longer significant and will always return 1.")]
pub fn stride(&self) -> usize {
self.coords.strides().0
}
/// Iterates through this point coordinates.
///
/// # Example
/// ```
/// # use nalgebra::Point3;
/// let p = Point3::new(1.0, 2.0, 3.0);
/// let mut it = p.iter().cloned();
///
/// assert_eq!(it.next(), Some(1.0));
/// assert_eq!(it.next(), Some(2.0));
/// assert_eq!(it.next(), Some(3.0));
/// assert_eq!(it.next(), None);
/// ```
#[inline]
pub fn iter(
&self,
) -> MatrixIter<'_, T, D, Const<1>, >::Buffer> {
self.coords.iter()
}
/// Gets a reference to i-th element of this point without bound-checking.
#[inline]
#[must_use]
pub unsafe fn get_unchecked(&self, i: usize) -> &T {
self.coords.vget_unchecked(i)
}
/// Mutably iterates through this point coordinates.
///
/// # Example
/// ```
/// # use nalgebra::Point3;
/// let mut p = Point3::new(1.0, 2.0, 3.0);
///
/// for e in p.iter_mut() {
/// *e *= 10.0;
/// }
///
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
/// ```
#[inline]
pub fn iter_mut(
&mut self,
) -> MatrixIterMut<'_, T, D, Const<1>, >::Buffer> {
self.coords.iter_mut()
}
/// Gets a mutable reference to i-th element of this point without bound-checking.
#[inline]
#[must_use]
pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T {
self.coords.vget_unchecked_mut(i)
}
/// Swaps two entries without bound-checking.
#[inline]
pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) {
self.coords.swap_unchecked((i1, 0), (i2, 0))
}
}
impl AbsDiffEq for OPoint
where
T::Epsilon: Clone,
DefaultAllocator: Allocator,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.coords.abs_diff_eq(&other.coords, epsilon)
}
}
impl RelativeEq for OPoint
where
T::Epsilon: Clone,
DefaultAllocator: Allocator,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.coords
.relative_eq(&other.coords, epsilon, max_relative)
}
}
impl UlpsEq for OPoint
where
T::Epsilon: Clone,
DefaultAllocator: Allocator,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.coords.ulps_eq(&other.coords, epsilon, max_ulps)
}
}
impl Eq for OPoint where DefaultAllocator: Allocator {}
impl PartialEq for OPoint
where
DefaultAllocator: Allocator,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.coords == right.coords
}
}
impl PartialOrd for OPoint
where
DefaultAllocator: Allocator,
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option {
self.coords.partial_cmp(&other.coords)
}
#[inline]
fn lt(&self, right: &Self) -> bool {
self.coords.lt(&right.coords)
}
#[inline]
fn le(&self, right: &Self) -> bool {
self.coords.le(&right.coords)
}
#[inline]
fn gt(&self, right: &Self) -> bool {
self.coords.gt(&right.coords)
}
#[inline]
fn ge(&self, right: &Self) -> bool {
self.coords.ge(&right.coords)
}
}
/*
* inf/sup
*/
impl OPoint
where
DefaultAllocator: Allocator,
{
/// Computes the infimum (aka. componentwise min) of two points.
#[inline]
#[must_use]
pub fn inf(&self, other: &Self) -> OPoint {
self.coords.inf(&other.coords).into()
}
/// Computes the supremum (aka. componentwise max) of two points.
#[inline]
#[must_use]
pub fn sup(&self, other: &Self) -> OPoint {
self.coords.sup(&other.coords).into()
}
/// Computes the (infimum, supremum) of two points.
#[inline]
#[must_use]
pub fn inf_sup(&self, other: &Self) -> (OPoint, OPoint) {
let (inf, sup) = self.coords.inf_sup(&other.coords);
(inf.into(), sup.into())
}
}
/*
*
* Display
*
*/
impl fmt::Display for OPoint
where
DefaultAllocator: Allocator,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{{")?;
let mut it = self.coords.iter();
write!(f, "{}", *it.next().unwrap())?;
for comp in it {
write!(f, ", {}", *comp)?;
}
write!(f, "}}")
}
}