use alga::general::Real; use base::allocator::Allocator; use base::constraint::{SameNumberOfRows, ShapeConstraint}; use base::dimension::{Dim, U1}; use base::storage::{Storage, StorageMut}; use base::{DefaultAllocator, Matrix, MatrixMN, SquareMatrix, Vector}; impl> SquareMatrix { /// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only /// the lower-triangular part of `self` (including the diagonal) is concidered not-zero. #[inline] pub fn solve_lower_triangular( &self, b: &Matrix, ) -> Option> where S2: StorageMut, DefaultAllocator: Allocator, ShapeConstraint: SameNumberOfRows, { let mut res = b.clone_owned(); if self.solve_lower_triangular_mut(&mut res) { Some(res) } else { None } } /// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only /// the upper-triangular part of `self` (including the diagonal) is concidered not-zero. #[inline] pub fn solve_upper_triangular( &self, b: &Matrix, ) -> Option> where S2: StorageMut, DefaultAllocator: Allocator, ShapeConstraint: SameNumberOfRows, { let mut res = b.clone_owned(); if self.solve_upper_triangular_mut(&mut res) { Some(res) } else { None } } /// Solves the linear system `self . x = b` where `x` is the unknown and only the /// lower-triangular part of `self` (including the diagonal) is concidered not-zero. pub fn solve_lower_triangular_mut( &self, b: &mut Matrix, ) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let cols = b.ncols(); for i in 0..cols { if !self.solve_lower_triangular_vector_mut(&mut b.column_mut(i)) { return false; } } true } fn solve_lower_triangular_vector_mut(&self, b: &mut Vector) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let dim = self.nrows(); for i in 0..dim { let coeff; unsafe { let diag = *self.get_unchecked(i, i); if diag.is_zero() { return false; } coeff = *b.vget_unchecked(i) / diag; *b.vget_unchecked_mut(i) = coeff; } b.rows_range_mut(i + 1..) .axpy(-coeff, &self.slice_range(i + 1.., i), N::one()); } true } // FIXME: add the same but for solving upper-triangular. /// Solves the linear system `self . x = b` where `x` is the unknown and only the /// lower-triangular part of `self` is concidered not-zero. The diagonal is never read as it is /// assumed to be equal to `diag`. Returns `false` and does not modify its inputs if `diag` is zero. pub fn solve_lower_triangular_with_diag_mut( &self, b: &mut Matrix, diag: N, ) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { if diag.is_zero() { return false; } let dim = self.nrows(); let cols = b.ncols(); for k in 0..cols { let mut bcol = b.column_mut(k); for i in 0..dim - 1 { let coeff = unsafe { *bcol.vget_unchecked(i) } / diag; bcol.rows_range_mut(i + 1..) .axpy(-coeff, &self.slice_range(i + 1.., i), N::one()); } } true } /// Solves the linear system `self . x = b` where `x` is the unknown and only the /// upper-triangular part of `self` (including the diagonal) is concidered not-zero. pub fn solve_upper_triangular_mut( &self, b: &mut Matrix, ) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let cols = b.ncols(); for i in 0..cols { if !self.solve_upper_triangular_vector_mut(&mut b.column_mut(i)) { return false; } } true } fn solve_upper_triangular_vector_mut(&self, b: &mut Vector) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let dim = self.nrows(); for i in (0..dim).rev() { let coeff; unsafe { let diag = *self.get_unchecked(i, i); if diag.is_zero() { return false; } coeff = *b.vget_unchecked(i) / diag; *b.vget_unchecked_mut(i) = coeff; } b.rows_range_mut(..i) .axpy(-coeff, &self.slice_range(..i, i), N::one()); } true } /* * * Transpose versions * */ /// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only /// the lower-triangular part of `self` (including the diagonal) is concidered not-zero. #[inline] pub fn tr_solve_lower_triangular( &self, b: &Matrix, ) -> Option> where S2: StorageMut, DefaultAllocator: Allocator, ShapeConstraint: SameNumberOfRows, { let mut res = b.clone_owned(); if self.tr_solve_lower_triangular_mut(&mut res) { Some(res) } else { None } } /// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only /// the upper-triangular part of `self` (including the diagonal) is concidered not-zero. #[inline] pub fn tr_solve_upper_triangular( &self, b: &Matrix, ) -> Option> where S2: StorageMut, DefaultAllocator: Allocator, ShapeConstraint: SameNumberOfRows, { let mut res = b.clone_owned(); if self.tr_solve_upper_triangular_mut(&mut res) { Some(res) } else { None } } /// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the /// lower-triangular part of `self` (including the diagonal) is concidered not-zero. pub fn tr_solve_lower_triangular_mut( &self, b: &mut Matrix, ) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let cols = b.ncols(); for i in 0..cols { if !self.tr_solve_lower_triangular_vector_mut(&mut b.column_mut(i)) { return false; } } true } fn tr_solve_lower_triangular_vector_mut(&self, b: &mut Vector) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let dim = self.nrows(); for i in (0..dim).rev() { let dot = self.slice_range(i + 1.., i).dot(&b.slice_range(i + 1.., 0)); unsafe { let b_i = b.vget_unchecked_mut(i); let diag = *self.get_unchecked(i, i); if diag.is_zero() { return false; } *b_i = (*b_i - dot) / diag; } } true } /// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the /// upper-triangular part of `self` (including the diagonal) is concidered not-zero. pub fn tr_solve_upper_triangular_mut( &self, b: &mut Matrix, ) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let cols = b.ncols(); for i in 0..cols { if !self.tr_solve_upper_triangular_vector_mut(&mut b.column_mut(i)) { return false; } } true } fn tr_solve_upper_triangular_vector_mut(&self, b: &mut Vector) -> bool where S2: StorageMut, ShapeConstraint: SameNumberOfRows, { let dim = self.nrows(); for i in 0..dim { let dot = self.slice_range(..i, i).dot(&b.slice_range(..i, 0)); unsafe { let b_i = b.vget_unchecked_mut(i); let diag = *self.get_unchecked(i, i); if diag.is_zero() { return false; } *b_i = (*b_i - dot) / diag; } } true } }