use num::Zero; use std::ops::Neg; use crate::allocator::Allocator; use crate::base::{DefaultAllocator, Dim, DimName, Matrix, MatrixMN, Normed, VectorN}; use crate::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint}; use crate::storage::{Storage, StorageMut}; use crate::{ComplexField, Scalar, SimdComplexField, Unit}; use simba::scalar::ClosedNeg; use simba::simd::{SimdOption, SimdPartialOrd}; // FIXME: this should be be a trait on alga? /// A trait for abstract matrix norms. /// /// This may be moved to the alga crate in the future. pub trait Norm { /// Apply this norm to the given matrix. fn norm(&self, m: &Matrix) -> N::SimdRealField where R: Dim, C: Dim, S: Storage; /// Use the metric induced by this norm to compute the metric distance between the two given matrices. fn metric_distance( &self, m1: &Matrix, m2: &Matrix, ) -> N::SimdRealField where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns; } /// Euclidean norm. pub struct EuclideanNorm; /// Lp norm. pub struct LpNorm(pub i32); /// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm. pub struct UniformNorm; impl Norm for EuclideanNorm { #[inline] fn norm(&self, m: &Matrix) -> N::SimdRealField where R: Dim, C: Dim, S: Storage, { m.norm_squared().simd_sqrt() } #[inline] fn metric_distance( &self, m1: &Matrix, m2: &Matrix, ) -> N::SimdRealField where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| { let diff = a - b; acc + diff.simd_modulus_squared() }) .simd_sqrt() } } impl Norm for LpNorm { #[inline] fn norm(&self, m: &Matrix) -> N::SimdRealField where R: Dim, C: Dim, S: Storage, { m.fold(N::SimdRealField::zero(), |a, b| { a + b.simd_modulus().simd_powi(self.0) }) .simd_powf(crate::convert(1.0 / (self.0 as f64))) } #[inline] fn metric_distance( &self, m1: &Matrix, m2: &Matrix, ) -> N::SimdRealField where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| { let diff = a - b; acc + diff.simd_modulus().simd_powi(self.0) }) .simd_powf(crate::convert(1.0 / (self.0 as f64))) } } impl Norm for UniformNorm { #[inline] fn norm(&self, m: &Matrix) -> N::SimdRealField where R: Dim, C: Dim, S: Storage, { // NOTE: we don't use `m.amax()` here because for the complex // numbers this will return the max norm1 instead of the modulus. m.fold(N::SimdRealField::zero(), |acc, a| { acc.simd_max(a.simd_modulus()) }) } #[inline] fn metric_distance( &self, m1: &Matrix, m2: &Matrix, ) -> N::SimdRealField where R1: Dim, C1: Dim, S1: Storage, R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| { let val = (a - b).simd_modulus(); acc.simd_max(val) }) } } impl> Matrix { /// The squared L2 norm of this vector. #[inline] pub fn norm_squared(&self) -> N::SimdRealField { let mut res = N::SimdRealField::zero(); for i in 0..self.ncols() { let col = self.column(i); res += col.dotc(&col).simd_real() } res } /// The L2 norm of this matrix. /// /// Use `.apply_norm` to apply a custom norm. #[inline] pub fn norm(&self) -> N::SimdRealField { self.norm_squared().simd_sqrt() } /// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm. /// /// Use `.apply_metric_distance` to apply a custom norm. #[inline] pub fn metric_distance(&self, rhs: &Matrix) -> N::SimdRealField where R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { self.apply_metric_distance(rhs, &EuclideanNorm) } /// Uses the given `norm` to compute the norm of `self`. /// /// # Example /// /// ``` /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm}; /// /// let v = Vector3::new(1.0, 2.0, 3.0); /// assert_eq!(v.apply_norm(&UniformNorm), 3.0); /// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0); /// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm()); /// ``` #[inline] pub fn apply_norm(&self, norm: &impl Norm) -> N::SimdRealField { norm.norm(self) } /// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`. /// /// # Example /// /// ``` /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm}; /// /// let v1 = Vector3::new(1.0, 2.0, 3.0); /// let v2 = Vector3::new(10.0, 20.0, 30.0); /// /// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0); /// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0); /// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm()); /// ``` #[inline] pub fn apply_metric_distance( &self, rhs: &Matrix, norm: &impl Norm, ) -> N::SimdRealField where R2: Dim, C2: Dim, S2: Storage, ShapeConstraint: SameNumberOfRows + SameNumberOfColumns, { norm.metric_distance(self, rhs) } /// A synonym for the norm of this matrix. /// /// Aka the length. /// /// This function is simply implemented as a call to `norm()` #[inline] pub fn magnitude(&self) -> N::SimdRealField { self.norm() } /// A synonym for the squared norm of this matrix. /// /// Aka the squared length. /// /// This function is simply implemented as a call to `norm_squared()` #[inline] pub fn magnitude_squared(&self) -> N::SimdRealField { self.norm_squared() } /// Sets the magnitude of this vector. #[inline] pub fn set_magnitude(&mut self, magnitude: N::SimdRealField) where S: StorageMut { let n = self.norm(); self.scale_mut(magnitude / n) } /// Returns a normalized version of this matrix. #[inline] #[must_use = "Did you mean to use normalize_mut()?"] pub fn normalize(&self) -> MatrixMN where DefaultAllocator: Allocator { self.unscale(self.norm()) } /// The Lp norm of this matrix. #[inline] pub fn lp_norm(&self, p: i32) -> N::SimdRealField { self.apply_norm(&LpNorm(p)) } #[inline] #[must_use = "Did you mean to use simd_try_normalize_mut()?"] pub fn simd_try_normalize(&self, min_norm: N::SimdRealField) -> SimdOption> where N::Element: Scalar, DefaultAllocator: Allocator + Allocator, { let n = self.norm(); let le = n.simd_le(min_norm); let val = self.unscale(n); SimdOption::new(val, le) } } impl> Matrix { /// Sets the magnitude of this vector unless it is smaller than `min_magnitude`. /// /// If `self.magnitude()` is smaller than `min_magnitude`, it will be left unchanged. /// Otherwise this is equivalent to: `*self = self.normalize() * magnitude. #[inline] pub fn try_set_magnitude(&mut self, magnitude: N::RealField, min_magnitude: N::RealField) where S: StorageMut { let n = self.norm(); if n >= min_magnitude { self.scale_mut(magnitude / n) } } /// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`. #[inline] #[must_use = "Did you mean to use try_normalize_mut()?"] pub fn try_normalize(&self, min_norm: N::RealField) -> Option> where DefaultAllocator: Allocator { let n = self.norm(); if n <= min_norm { None } else { Some(self.unscale(n)) } } } impl> Matrix { /// Normalizes this matrix in-place and returns its norm. #[inline] pub fn normalize_mut(&mut self) -> N::SimdRealField { let n = self.norm(); self.unscale_mut(n); n } #[inline] #[must_use = "Did you mean to use simd_try_normalize_mut()?"] pub fn simd_try_normalize_mut( &mut self, min_norm: N::SimdRealField, ) -> SimdOption where N::Element: Scalar, DefaultAllocator: Allocator + Allocator, { let n = self.norm(); let le = n.simd_le(min_norm); self.apply(|e| e.simd_unscale(n).select(le, e)); SimdOption::new(n, le) } } impl> Matrix { /// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`. /// /// If the normalization succeeded, returns the old norm of this matrix. #[inline] pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option { let n = self.norm(); if n <= min_norm { None } else { self.unscale_mut(n); Some(n) } } } impl Normed for MatrixMN where DefaultAllocator: Allocator { type Norm = N::SimdRealField; #[inline] fn norm(&self) -> N::SimdRealField { self.norm() } #[inline] fn norm_squared(&self) -> N::SimdRealField { self.norm_squared() } #[inline] fn scale_mut(&mut self, n: Self::Norm) { self.scale_mut(n) } #[inline] fn unscale_mut(&mut self, n: Self::Norm) { self.unscale_mut(n) } } impl Neg for Unit> where DefaultAllocator: Allocator { type Output = Unit>; #[inline] fn neg(self) -> Self::Output { Unit::new_unchecked(-self.value) } } // FIXME: specialization will greatly simplify this implementation in the future. // In particular: // − use `x()` instead of `::canonical_basis_element` // − use `::new(x, y, z)` instead of `::from_slice` impl VectorN where DefaultAllocator: Allocator { /// The i-the canonical basis element. #[inline] fn canonical_basis_element(i: usize) -> Self { assert!(i < D::dim(), "Index out of bound."); let mut res = Self::zero(); unsafe { *res.data.get_unchecked_linear_mut(i) = N::one(); } res } /// Orthonormalizes the given family of vectors. The largest free family of vectors is moved at /// the beginning of the array and its size is returned. Vectors at an indices larger or equal to /// this length can be modified to an arbitrary value. #[inline] pub fn orthonormalize(vs: &mut [Self]) -> usize { let mut nbasis_elements = 0; for i in 0..vs.len() { { let (elt, basis) = vs[..i + 1].split_last_mut().unwrap(); for basis_element in &basis[..nbasis_elements] { *elt -= &*basis_element * elt.dot(basis_element) } } if vs[i].try_normalize_mut(N::RealField::zero()).is_some() { // FIXME: this will be efficient on dynamically-allocated vectors but for // statically-allocated ones, `.clone_from` would be better. vs.swap(nbasis_elements, i); nbasis_elements += 1; // All the other vectors will be dependent. if nbasis_elements == D::dim() { break; } } } nbasis_elements } /// Applies the given closure to each element of the orthonormal basis of the subspace /// orthogonal to free family of vectors `vs`. If `vs` is not a free family, the result is /// unspecified. // FIXME: return an iterator instead when `-> impl Iterator` will be supported by Rust. #[inline] pub fn orthonormal_subspace_basis(vs: &[Self], mut f: F) where F: FnMut(&Self) -> bool { // FIXME: is this necessary? assert!( vs.len() <= D::dim(), "The given set of vectors has no chance of being a free family." ); match D::dim() { 1 => { if vs.len() == 0 { let _ = f(&Self::canonical_basis_element(0)); } } 2 => { if vs.len() == 0 { let _ = f(&Self::canonical_basis_element(0)) && f(&Self::canonical_basis_element(1)); } else if vs.len() == 1 { let v = &vs[0]; let res = Self::from_column_slice(&[-v[1], v[0]]); let _ = f(&res.normalize()); } // Otherwise, nothing. } 3 => { if vs.len() == 0 { let _ = f(&Self::canonical_basis_element(0)) && f(&Self::canonical_basis_element(1)) && f(&Self::canonical_basis_element(2)); } else if vs.len() == 1 { let v = &vs[0]; let mut a; if v[0].norm1() > v[1].norm1() { a = Self::from_column_slice(&[v[2], N::zero(), -v[0]]); } else { a = Self::from_column_slice(&[N::zero(), -v[2], v[1]]); }; let _ = a.normalize_mut(); if f(&a.cross(v)) { let _ = f(&a); } } else if vs.len() == 2 { let _ = f(&vs[0].cross(&vs[1]).normalize()); } } _ => { #[cfg(any(feature = "std", feature = "alloc"))] { // XXX: use a GenericArray instead. let mut known_basis = Vec::new(); for v in vs.iter() { known_basis.push(v.normalize()) } for i in 0..D::dim() - vs.len() { let mut elt = Self::canonical_basis_element(i); for v in &known_basis { elt -= v * elt.dot(v) } if let Some(subsp_elt) = elt.try_normalize(N::RealField::zero()) { if !f(&subsp_elt) { return; }; known_basis.push(subsp_elt); } } } #[cfg(all(not(feature = "std"), not(feature = "alloc")))] { panic!("Cannot compute the orthogonal subspace basis of a vector with a dimension greater than 3 \ if #![no_std] is enabled and the 'alloc' feature is not enabled.") } } } } }