use alga::general::{ClosedAdd, ClosedMul}; use num::{One, Zero}; use std::iter; use std::marker::PhantomData; use std::ops::{Add, Mul, Range}; use std::slice; use allocator::Allocator; use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint}; use storage::{Storage, StorageMut}; use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1}; // FIXME: this structure exists for now only because impl trait // cannot be used for trait method return types. pub trait CsStorageIter<'a, N, R, C = U1> { type ColumnEntries: Iterator; type ColumnRowIndices: Iterator; fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices; fn column_entries(&'a self, j: usize) -> Self::ColumnEntries; } pub trait CsStorageIterMut<'a, N: 'a, R, C = U1> { type ColumnEntriesMut: Iterator; fn column_entries_mut(&'a mut self, j: usize) -> Self::ColumnEntriesMut; } pub trait CsStorage: for<'a> CsStorageIter<'a, N, R, C> { fn shape(&self) -> (R, C); unsafe fn row_index_unchecked(&self, i: usize) -> usize; unsafe fn get_value_unchecked(&self, i: usize) -> &N; fn get_value(&self, i: usize) -> &N; fn row_index(&self, i: usize) -> usize; fn column_range(&self, i: usize) -> Range; fn len(&self) -> usize; } pub trait CsStorageMut: CsStorage + for<'a> CsStorageIterMut<'a, N, R, C> { } #[derive(Clone, Debug)] pub struct CsVecStorage where DefaultAllocator: Allocator, { pub(crate) shape: (R, C), pub(crate) p: VectorN, pub(crate) i: Vec, pub(crate) vals: Vec, } impl CsVecStorage where DefaultAllocator: Allocator, { pub fn values(&self) -> &[N] { &self.vals } } impl CsVecStorage where DefaultAllocator: Allocator {} impl<'a, N: Scalar, R: Dim, C: Dim> CsStorageIter<'a, N, R, C> for CsVecStorage where DefaultAllocator: Allocator, { type ColumnEntries = iter::Zip>, iter::Cloned>>; type ColumnRowIndices = iter::Cloned>; #[inline] fn column_entries(&'a self, j: usize) -> Self::ColumnEntries { let rng = self.column_range(j); self.i[rng.clone()] .iter() .cloned() .zip(self.vals[rng].iter().cloned()) } #[inline] fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices { let rng = self.column_range(j); self.i[rng.clone()].iter().cloned() } } impl CsStorage for CsVecStorage where DefaultAllocator: Allocator, { #[inline] fn shape(&self) -> (R, C) { self.shape } #[inline] fn len(&self) -> usize { self.vals.len() } #[inline] fn row_index(&self, i: usize) -> usize { self.i[i] } #[inline] unsafe fn row_index_unchecked(&self, i: usize) -> usize { *self.i.get_unchecked(i) } #[inline] unsafe fn get_value_unchecked(&self, i: usize) -> &N { self.vals.get_unchecked(i) } #[inline] fn get_value(&self, i: usize) -> &N { &self.vals[i] } #[inline] fn column_range(&self, j: usize) -> Range { let end = if j + 1 == self.p.len() { self.len() } else { self.p[j + 1] }; self.p[j]..end } } impl<'a, N: Scalar, R: Dim, C: Dim> CsStorageIterMut<'a, N, R, C> for CsVecStorage where DefaultAllocator: Allocator, { type ColumnEntriesMut = iter::Zip>, slice::IterMut<'a, N>>; #[inline] fn column_entries_mut(&'a mut self, j: usize) -> Self::ColumnEntriesMut { let rng = self.column_range(j); self.i[rng.clone()] .iter() .cloned() .zip(self.vals[rng].iter_mut()) } } impl CsStorageMut for CsVecStorage where DefaultAllocator: Allocator { } /* pub struct CsSliceStorage<'a, N: Scalar, R: Dim, C: DimAdd> { shape: (R, C), p: VectorSlice>, i: VectorSlice, vals: VectorSlice, }*/ /// A compressed sparse column matrix. #[derive(Clone, Debug)] pub struct CsMatrix = CsVecStorage> { pub data: S, _phantoms: PhantomData<(N, R, C)>, } pub type CsVector> = CsMatrix; impl CsMatrix where DefaultAllocator: Allocator, { pub fn new_uninitialized_generic(nrows: R, ncols: C, nvals: usize) -> Self { let mut i = Vec::with_capacity(nvals); unsafe { i.set_len(nvals); } i.shrink_to_fit(); let mut vals = Vec::with_capacity(nvals); unsafe { vals.set_len(nvals); } vals.shrink_to_fit(); CsMatrix { data: CsVecStorage { shape: (nrows, ncols), p: VectorN::zeros_generic(ncols, U1), i, vals, }, _phantoms: PhantomData, } } } fn cumsum(a: &mut VectorN, b: &mut VectorN) -> usize where DefaultAllocator: Allocator, { assert!(a.len() == b.len()); let mut sum = 0; for i in 0..a.len() { b[i] = sum; sum += a[i]; a[i] = b[i]; } sum } impl> CsMatrix { pub fn from_data(data: S) -> Self { CsMatrix { data, _phantoms: PhantomData, } } pub fn len(&self) -> usize { self.data.len() } pub fn nrows(&self) -> usize { self.data.shape().0.value() } pub fn ncols(&self) -> usize { self.data.shape().1.value() } pub fn shape(&self) -> (usize, usize) { let (nrows, ncols) = self.data.shape(); (nrows.value(), ncols.value()) } pub fn is_square(&self) -> bool { let (nrows, ncols) = self.data.shape(); nrows.value() == ncols.value() } pub fn transpose(&self) -> CsMatrix where DefaultAllocator: Allocator, { let (nrows, ncols) = self.data.shape(); let nvals = self.len(); let mut res = CsMatrix::new_uninitialized_generic(ncols, nrows, nvals); let mut workspace = Vector::zeros_generic(nrows, U1); // Compute p. for i in 0..nvals { let row_id = self.data.row_index(i); workspace[row_id] += 1; } let _ = cumsum(&mut workspace, &mut res.data.p); // Fill the result. for j in 0..ncols.value() { for (row_id, value) in self.data.column_entries(j) { let shift = workspace[row_id]; res.data.vals[shift] = value; res.data.i[shift] = j; workspace[row_id] += 1; } } res } }