use crate::assert_panics; use nalgebra::DMatrix; use nalgebra_sparse::coo::CooMatrix; use nalgebra_sparse::SparseFormatErrorKind; #[test] fn coo_construction_for_valid_data() { // Test that construction with try_from_triplets succeeds, that the state of the // matrix afterwards is as expected, and that the dense representation matches expectations. { // Zero matrix let coo = CooMatrix::::try_from_triplets(3, 2, Vec::new(), Vec::new(), Vec::new()).unwrap(); assert_eq!(coo.nrows(), 3); assert_eq!(coo.ncols(), 2); assert!(coo.triplet_iter().next().is_none()); assert!(coo.row_indices().is_empty()); assert!(coo.col_indices().is_empty()); assert!(coo.values().is_empty()); assert_eq!(DMatrix::from(&coo), DMatrix::repeat(3, 2, 0)); } { // Arbitrary matrix, no duplicates let i = vec![0, 1, 0, 0, 2]; let j = vec![0, 2, 1, 3, 3]; let v = vec![2, 3, 7, 3, 1]; let coo = CooMatrix::::try_from_triplets(3, 5, i.clone(), j.clone(), v.clone()).unwrap(); assert_eq!(coo.nrows(), 3); assert_eq!(coo.ncols(), 5); assert_eq!(i.as_slice(), coo.row_indices()); assert_eq!(j.as_slice(), coo.col_indices()); assert_eq!(v.as_slice(), coo.values()); let expected_triplets: Vec<_> = i .iter() .zip(&j) .zip(&v) .map(|((i, j), v)| (*i, *j, *v)) .collect(); let actual_triplets: Vec<_> = coo.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect(); assert_eq!(actual_triplets, expected_triplets); #[rustfmt::skip] let expected_dense = DMatrix::from_row_slice(3, 5, &[ 2, 7, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0 ]); assert_eq!(DMatrix::from(&coo), expected_dense); } { // Arbitrary matrix, with duplicates let i = vec![0, 1, 0, 0, 0, 0, 2, 1]; let j = vec![0, 2, 0, 1, 0, 3, 3, 2]; let v = vec![2, 3, 4, 7, 1, 3, 1, 5]; let coo = CooMatrix::::try_from_triplets(3, 5, i.clone(), j.clone(), v.clone()).unwrap(); assert_eq!(coo.nrows(), 3); assert_eq!(coo.ncols(), 5); assert_eq!(i.as_slice(), coo.row_indices()); assert_eq!(j.as_slice(), coo.col_indices()); assert_eq!(v.as_slice(), coo.values()); let expected_triplets: Vec<_> = i .iter() .zip(&j) .zip(&v) .map(|((i, j), v)| (*i, *j, *v)) .collect(); let actual_triplets: Vec<_> = coo.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect(); assert_eq!(actual_triplets, expected_triplets); #[rustfmt::skip] let expected_dense = DMatrix::from_row_slice(3, 5, &[ 7, 7, 0, 3, 0, 0, 0, 8, 0, 0, 0, 0, 0, 1, 0 ]); assert_eq!(DMatrix::from(&coo), expected_dense); } } #[test] fn coo_try_from_triplets_reports_out_of_bounds_indices() { { // 0x0 matrix let result = CooMatrix::::try_from_triplets(0, 0, vec![0], vec![0], vec![2]); assert!(matches!( result.unwrap_err().kind(), SparseFormatErrorKind::IndexOutOfBounds )); } { // 1x1 matrix, row out of bounds let result = CooMatrix::::try_from_triplets(1, 1, vec![1], vec![0], vec![2]); assert!(matches!( result.unwrap_err().kind(), SparseFormatErrorKind::IndexOutOfBounds )); } { // 1x1 matrix, col out of bounds let result = CooMatrix::::try_from_triplets(1, 1, vec![0], vec![1], vec![2]); assert!(matches!( result.unwrap_err().kind(), SparseFormatErrorKind::IndexOutOfBounds )); } { // 1x1 matrix, row and col out of bounds let result = CooMatrix::::try_from_triplets(1, 1, vec![1], vec![1], vec![2]); assert!(matches!( result.unwrap_err().kind(), SparseFormatErrorKind::IndexOutOfBounds )); } { // Arbitrary matrix, row out of bounds let i = vec![0, 1, 0, 3, 2]; let j = vec![0, 2, 1, 3, 3]; let v = vec![2, 3, 7, 3, 1]; let result = CooMatrix::::try_from_triplets(3, 5, i, j, v); assert!(matches!( result.unwrap_err().kind(), SparseFormatErrorKind::IndexOutOfBounds )); } { // Arbitrary matrix, col out of bounds let i = vec![0, 1, 0, 0, 2]; let j = vec![0, 2, 1, 5, 3]; let v = vec![2, 3, 7, 3, 1]; let result = CooMatrix::::try_from_triplets(3, 5, i, j, v); assert!(matches!( result.unwrap_err().kind(), SparseFormatErrorKind::IndexOutOfBounds )); } } #[test] fn coo_try_from_triplets_panics_on_mismatched_vectors() { // Check that try_from_triplets panics when the triplet vectors have different lengths macro_rules! assert_errs { ($result:expr) => { assert!(matches!( $result.unwrap_err().kind(), SparseFormatErrorKind::InvalidStructure )) }; } assert_errs!(CooMatrix::::try_from_triplets( 3, 5, vec![1, 2], vec![0], vec![0] )); assert_errs!(CooMatrix::::try_from_triplets( 3, 5, vec![1], vec![0, 0], vec![0] )); assert_errs!(CooMatrix::::try_from_triplets( 3, 5, vec![1], vec![0], vec![0, 1] )); assert_errs!(CooMatrix::::try_from_triplets( 3, 5, vec![1, 2], vec![0, 1], vec![0] )); assert_errs!(CooMatrix::::try_from_triplets( 3, 5, vec![1], vec![0, 1], vec![0, 1] )); assert_errs!(CooMatrix::::try_from_triplets( 3, 5, vec![1, 1], vec![0], vec![0, 1] )); } #[test] fn coo_push_valid_entries() { let mut coo = CooMatrix::new(3, 3); coo.push(0, 0, 1); assert_eq!(coo.triplet_iter().collect::>(), vec![(0, 0, &1)]); coo.push(0, 0, 2); assert_eq!( coo.triplet_iter().collect::>(), vec![(0, 0, &1), (0, 0, &2)] ); coo.push(2, 2, 3); assert_eq!( coo.triplet_iter().collect::>(), vec![(0, 0, &1), (0, 0, &2), (2, 2, &3)] ); } #[test] fn coo_clear_triplet_valid_entries() { let mut coo = CooMatrix::new(3, 3); coo.push(0, 0, 1); coo.push(0, 0, 2); coo.push(2, 2, 3); // clear a triplet that is not included let triplet = coo.clear_triplet(0, 0, 0); assert_eq!(triplet, None); assert_eq!( coo.triplet_iter().collect::>(), vec![(0, 0, &1), (0, 0, &2), (2, 2, &3)] ); let triplet = coo.clear_triplet(0, 0, 1); assert_eq!(triplet, Some((0, 0, 1))); assert_eq!( coo.triplet_iter().collect::>(), vec![(0, 0, &2), (2, 2, &3)] ); let triplet = coo.clear_triplet(0, 0, 2); assert_eq!(triplet, Some((0, 0, 2))); assert_eq!(coo.triplet_iter().collect::>(), vec![(2, 2, &3)]); let triplet = coo.clear_triplet(2, 2, 3); assert_eq!(triplet, Some((2, 2, 3))); assert_eq!(coo.triplet_iter().collect::>(), vec![]); } #[test] fn coo_push_out_of_bounds_entries() { { // 0x0 matrix let coo = CooMatrix::new(0, 0); assert_panics!(coo.clone().push(0, 0, 1)); } { // 0x1 matrix assert_panics!(CooMatrix::new(0, 1).push(0, 0, 1)); } { // 1x0 matrix assert_panics!(CooMatrix::new(1, 0).push(0, 0, 1)); } { // Arbitrary matrix dimensions let coo = CooMatrix::new(3, 2); assert_panics!(coo.clone().push(3, 0, 1)); assert_panics!(coo.clone().push(2, 2, 1)); assert_panics!(coo.clone().push(3, 2, 1)); } } #[test] fn coo_push_matrix_valid_entries() { let mut coo = CooMatrix::new(3, 3); // Works with static { // new is row-major... let inserted = nalgebra::SMatrix::::new(1, 2, 3, 4); coo.push_matrix(1, 1, &inserted); // insert happens column-major, so expect transposition when read this way assert_eq!( coo.triplet_iter().collect::>(), vec![(1, 1, &1), (2, 1, &3), (1, 2, &2), (2, 2, &4)] ); } // Works with owned dynamic { let inserted = nalgebra::DMatrix::::repeat(1, 2, 5); coo.push_matrix(0, 0, &inserted); assert_eq!( coo.triplet_iter().collect::>(), vec![ (1, 1, &1), (2, 1, &3), (1, 2, &2), (2, 2, &4), (0, 0, &5), (0, 1, &5) ] ); } // Works with sliced { let source = nalgebra::SMatrix::::new(6, 7, 8, 9); let sliced = source.fixed_slice::<2, 1>(0, 0); coo.push_matrix(1, 0, &sliced); assert_eq!( coo.triplet_iter().collect::>(), vec![ (1, 1, &1), (2, 1, &3), (1, 2, &2), (2, 2, &4), (0, 0, &5), (0, 1, &5), (1, 0, &6), (2, 0, &8) ] ); } } #[test] fn coo_push_matrix_out_of_bounds_entries() { // 0x0 { let inserted = nalgebra::SMatrix::::new(1); assert_panics!(CooMatrix::new(0, 0).push_matrix(0, 0, &inserted)); } // 0x1 { let inserted = nalgebra::SMatrix::::new(1); assert_panics!(CooMatrix::new(1, 0).push_matrix(0, 0, &inserted)); } // 1x0 { let inserted = nalgebra::SMatrix::::new(1); assert_panics!(CooMatrix::new(0, 1).push_matrix(0, 0, &inserted)); } // 3x3 exceeds col-dim { let inserted = nalgebra::SMatrix::::repeat(1); assert_panics!(CooMatrix::new(3, 3).push_matrix(0, 2, &inserted)); } // 3x3 exceeds row-dim { let inserted = nalgebra::SMatrix::::repeat(1); assert_panics!(CooMatrix::new(3, 3).push_matrix(2, 0, &inserted)); } // 3x3 exceeds row-dim and row-dim { let inserted = nalgebra::SMatrix::::repeat(1); assert_panics!(CooMatrix::new(3, 3).push_matrix(2, 2, &inserted)); } }