use num_complex::Complex; use std::ops::MulAssign; use alga::general::Real; use core::{MatrixN, VectorN, DefaultAllocator, Matrix2, Vector2, SquareMatrix}; use dimension::{Dim, DimSub, DimDiff, U1, U2}; use storage::Storage; use allocator::Allocator; use linalg::givens; use linalg::SymmetricTridiagonal; use geometry::UnitComplex; /// The eigendecomposition of a symmetric matrix. pub struct SymmetricEigen where DefaultAllocator: Allocator + Allocator { /// The eigenvectors of the decomposed matrix. pub eigenvectors: MatrixN, /// The unsorted eigenvalues of the decomposed matrix. pub eigenvalues: VectorN } impl SymmetricEigen where DefaultAllocator: Allocator + Allocator { /// Computes the eigendecomposition of the given symmetric matrix. /// /// Only the lower-triangular and diagonal parts of `m` are read. pub fn new(m: MatrixN) -> Self where D: DimSub, DefaultAllocator: Allocator> { Self::try_new(m, N::default_epsilon(), 0).unwrap() } /// Computes the eigendecomposition of the given symmetric matrix with user-specified /// convergence parameters. /// /// Only the lower-triangular and diagonal parts of `m` are read. /// /// # Arguments /// /// * `eps` − tolerence used to determine when a value converged to 0. /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// continues indefinitely until convergence. pub fn try_new(m: MatrixN, eps: N, max_niter: usize) -> Option where D: DimSub, DefaultAllocator: Allocator> { Self::do_decompose(m, true, eps, max_niter).map(|(vals, vecs)| { SymmetricEigen { eigenvectors: vecs.unwrap(), eigenvalues: vals } }) } fn do_decompose(mut m: MatrixN, eigenvectors: bool, eps: N, max_niter: usize) -> Option<(VectorN, Option>)> where D: DimSub, DefaultAllocator: Allocator> { assert!(m.is_square(), "Unable to compute the eigendecomposition of a non-square matrix."); let dim = m.nrows(); let m_amax = m.amax(); if !m_amax.is_zero() { m /= m_amax; } let (mut q, mut diag, mut off_diag); if eigenvectors { let res = SymmetricTridiagonal::new(m).unpack(); q = Some(res.0); diag = res.1; off_diag = res.2; } else { let res = SymmetricTridiagonal::new(m).unpack_tridiagonal(); q = None; diag = res.0; off_diag = res.1; } if dim == 1 { diag *= m_amax; return Some((diag, q)); } let mut niter = 0; let (mut start, mut end) = Self::delimit_subproblem(&diag, &mut off_diag, dim - 1, eps); while end != start { let subdim = end - start + 1; if subdim > 2 { let m = end - 1; let n = end; let mut v = Vector2::new( diag[start] - wilkinson_shift(diag[m], diag[n], off_diag[m]), off_diag[start]); for i in start .. n { let j = i + 1; if let Some((rot, norm)) = givens::cancel_y(&v) { if i > start { // Not the first iteration. off_diag[i - 1] = norm; } let mii = diag[i]; let mjj = diag[j]; let mij = off_diag[i]; let cc = rot.cos_angle() * rot.cos_angle(); let ss = rot.sin_angle() * rot.sin_angle(); let cs = rot.cos_angle() * rot.sin_angle(); let b = cs * ::convert(2.0) * mij; diag[i] = (cc * mii + ss * mjj) - b; diag[j] = (ss * mii + cc * mjj) + b; off_diag[i] = cs * (mii - mjj) + mij * (cc - ss); if i != n - 1 { v.x = off_diag[i]; v.y = -rot.sin_angle() * off_diag[i + 1]; off_diag[i + 1] *= rot.cos_angle(); } if let Some(ref mut q) = q { rot.inverse().rotate_rows(&mut q.fixed_columns_mut::(i)); } } else { break; } } if off_diag[m].abs() <= eps * (diag[m].abs() + diag[n].abs()) { end -= 1; } } else if subdim == 2 { let m = Matrix2::new(diag[start], off_diag[start], off_diag[start], diag[start + 1]); let eigvals = m.eigenvalues().unwrap(); let basis = Vector2::new(eigvals.x - diag[start + 1], off_diag[start]); diag[start + 0] = eigvals[0]; diag[start + 1] = eigvals[1]; if let Some(ref mut q) = q { if let Some(basis) = basis.try_normalize(eps) { let rot = UnitComplex::new_unchecked(Complex::new(basis.x, basis.y)); rot.rotate_rows(&mut q.fixed_columns_mut::(start)); } } end -= 1; } // Re-delimit the suproblem in case some decoupling occured. let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps); start = sub.0; end = sub.1; niter += 1; if niter == max_niter { return None; } } diag *= m_amax; Some((diag, q)) } fn delimit_subproblem(diag: &VectorN, off_diag: &mut VectorN>, end: usize, eps: N) -> (usize, usize) where D: DimSub, DefaultAllocator: Allocator> { let mut n = end; while n > 0 { let m = n - 1; if off_diag[m].abs() > eps * (diag[n].abs() + diag[m].abs()) { break; } n -= 1; } if n == 0 { return (0, 0); } let mut new_start = n - 1; while new_start > 0 { let m = new_start - 1; if off_diag[m].is_zero() || off_diag[m].abs() <= eps * (diag[new_start].abs() + diag[m].abs()) { off_diag[m] = N::zero(); break; } new_start -= 1; } (new_start, n) } /// Rebuild the original matrix. /// /// This is useful if some of the eigenvalues have been manually modified. pub fn recompose(&self) -> MatrixN { let mut u_t = self.eigenvectors.clone(); for i in 0 .. self.eigenvalues.len() { let val = self.eigenvalues[i]; u_t.column_mut(i).mul_assign(val); } u_t.transpose_mut(); &self.eigenvectors * u_t } } /// Computes the wilkinson shift, i.e., the 2x2 symmetric matrix eigenvalue to its tailing /// component `tnn`. /// /// The inputs are interpreted as the 2x2 matrix: /// tmm tmn /// tmn tnn pub fn wilkinson_shift(tmm: N, tnn: N, tmn: N) -> N { let sq_tmn = tmn * tmn; if !sq_tmn.is_zero() { // We have the guarantee thet the denominator won't be zero. let d = (tmm - tnn) * ::convert(0.5); tnn - sq_tmn / (d + d.signum() * (d * d + sq_tmn).sqrt()) } else { tnn } } /* * * Computations of eigenvalues for symmetric matrices. * */ impl, S: Storage> SquareMatrix where DefaultAllocator: Allocator + Allocator + Allocator> { /// Computes the eigendecomposition of this symmetric matrix. /// /// Only the lower-triangular part (including the diagonal) of `m` are read. pub fn symmetric_eigen(self) -> SymmetricEigen { SymmetricEigen::new(self.into_owned()) } /// Computes the eigendecomposition of the given symmetric matrix with user-specified /// convergence parameters. /// /// Only the lower-triangular and diagonal parts of `m` are read. /// /// # Arguments /// /// * `eps` − tolerence used to determine when a value converged to 0. /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// continues indefinitely until convergence. pub fn try_symmetric_eigen(self, eps: N, max_niter: usize) -> Option> { SymmetricEigen::try_new(self.into_owned(), eps, max_niter) } /// Computes the eigenvalues of this symmetric matrix. /// /// Only the lower-triangular part of the matrix is read. pub fn symmetric_eigenvalues(&self) -> VectorN { SymmetricEigen::do_decompose(self.clone_owned(), false, N::default_epsilon(), 0).unwrap().0 } } #[cfg(test)] mod test { use core::Matrix2; fn expected_shift(m: Matrix2) -> f64 { let vals = m.eigenvalues().unwrap(); if (vals.x - m.m22).abs() < (vals.y - m.m22).abs() { vals.x } else { vals.y } } #[test] fn wilkinson_shift_random() { for _ in 0 .. 1000 { let m = Matrix2::new_random(); let m = m * m.transpose(); let expected = expected_shift(m); let computed = super::wilkinson_shift(m.m11, m.m22, m.m12); println!("{} {}", expected, computed); assert!(relative_eq!(expected, computed, epsilon = 1.0e-7)); } } #[test] fn wilkinson_shift_zero() { let m = Matrix2::new(0.0, 0.0, 0.0, 0.0); assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12))); } #[test] fn wilkinson_shift_zero_diagonal() { let m = Matrix2::new(0.0, 42.0, 42.0, 0.0); assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12))); } #[test] fn wilkinson_shift_zero_off_diagonal() { let m = Matrix2::new(42.0, 0.0, 0.0, 64.0); assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12))); } #[test] fn wilkinson_shift_zero_trace() { let m = Matrix2::new(42.0, 20.0, 20.0, -42.0); assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12))); } #[test] fn wilkinson_shift_zero_diag_diff_and_zero_off_diagonal() { let m = Matrix2::new(42.0, 0.0, 0.0, 42.0); assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12))); } #[test] fn wilkinson_shift_zero_det() { let m = Matrix2::new(2.0, 4.0, 4.0, 8.0); assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12))); } }