use crate::SparseFormatError; use nalgebra::{ClosedAdd, DMatrix, Scalar}; use num_traits::Zero; /// A COO representation of a sparse matrix. /// /// A COO matrix stores entries in coordinate-form, that is triplets `(i, j, v)`, where `i` and `j` /// correspond to row and column indices of the entry, and `v` to the value of the entry. /// With the rare exception of matrix-vector multiplication of certain extremely sparse matrices, /// it is of limited use for standard matrix operations. Its main purpose is to facilitate /// easy construction of other, more efficient matrix formats (such as CSR/COO), and the /// conversion between different formats. /// /// Representation /// -------------- /// /// For given dimensions `nrows` and `ncols`, the matrix is represented by three same-length /// arrays `row_indices`, `col_indices` and `values` that constitute the coordinate triplets /// of the matrix. The indices must be in bounds, but *duplicate entries are explicitly allowed*. /// Upon conversion to other formats, the duplicate entries may be summed together. See the /// documentation for the respective conversion functions. /// /// Example /// ------- /// /// ```rust /// # use nalgebra_sparse::CooMatrix; /// // Create a zero matrix /// let mut coo = CooMatrix::new(4, 4); /// // Or initialize it with a set of triplets /// coo = CooMatrix::try_from_triplets(4, 4, vec![1, 2], vec![0, 1], vec![3.0, 4.0]).unwrap(); /// /// // Push a single triplet /// coo.push(2, 0, 1.0); /// /// // TODO: Convert to CSR /// ``` #[derive(Debug, Clone)] pub struct CooMatrix { nrows: usize, ncols: usize, row_indices: Vec, col_indices: Vec, values: Vec, } impl CooMatrix where T: Scalar, { /// Construct a zero COO matrix of the given dimensions. /// /// Specifically, the collection of triplets - corresponding to explicitly stored entries - /// is empty, so that the matrix (implicitly) represented by the COO matrix consists of all /// zero entries. pub fn new(nrows: usize, ncols: usize) -> Self { Self { nrows, ncols, row_indices: Vec::new(), col_indices: Vec::new(), values: Vec::new(), } } /// Try to construct a COO matrix from the given dimensions and a collection of /// (i, j, v) triplets. /// /// Returns an error if either row or column indices contain indices out of bounds, /// or if the data arrays do not all have the same length. Note that the COO format /// inherently supports duplicate entries. pub fn try_from_triplets( nrows: usize, ncols: usize, row_indices: Vec, col_indices: Vec, values: Vec, ) -> Result { if row_indices.len() != col_indices.len() { return Err(SparseFormatError::InvalidStructure( Box::from("Number of row and col indices must be the same.") )); } else if col_indices.len() != values.len() { return Err(SparseFormatError::InvalidStructure( Box::from("Number of col indices and values must be the same.") )); } let row_indices_in_bounds = row_indices.iter().all(|i| *i < nrows); let col_indices_in_bounds = col_indices.iter().all(|j| *j < ncols); if !row_indices_in_bounds { Err(SparseFormatError::IndexOutOfBounds(Box::from( "Row index out of bounds.", ))) } else if !col_indices_in_bounds { Err(SparseFormatError::IndexOutOfBounds(Box::from( "Col index out of bounds.", ))) } else { Ok(Self { nrows, ncols, row_indices, col_indices, values, }) } } /// An iterator over triplets (i, j, v). // TODO: Consider giving the iterator a concrete type instead of impl trait...? pub fn triplet_iter(&self) -> impl Iterator { self.row_indices .iter() .zip(&self.col_indices) .zip(&self.values) .map(|((i, j), v)| (*i, *j, v)) } /// Push a single triplet to the matrix. /// /// This adds the value `v` to the `i`th row and `j`th column in the matrix. /// /// Panics /// ------ /// /// Panics if `i` or `j` is out of bounds. #[inline(always)] pub fn push(&mut self, i: usize, j: usize, v: T) { assert!(i < self.nrows); assert!(j < self.ncols); self.row_indices.push(i); self.col_indices.push(j); self.values.push(v); } /// The number of rows in the matrix. #[inline(always)] pub fn nrows(&self) -> usize { self.nrows } /// The number of columns in the matrix. #[inline(always)] pub fn ncols(&self) -> usize { self.ncols } /// The row indices of the explicitly stored entries. pub fn row_indices(&self) -> &[usize] { &self.row_indices } /// The column indices of the explicitly stored entries. pub fn col_indices(&self) -> &[usize] { &self.col_indices } /// The values of the explicitly stored entries. pub fn values(&self) -> &[T] { &self.values } /// Disassembles the matrix into individual triplet arrays. /// /// Examples /// -------- /// /// ``` /// # use nalgebra_sparse::CooMatrix; /// let row_indices = vec![0, 1]; /// let col_indices = vec![1, 2]; /// let values = vec![1.0, 2.0]; /// let coo = CooMatrix::try_from_triplets(2, 3, row_indices, col_indices, values) /// .unwrap(); /// /// let (row_idx, col_idx, val) = coo.disassemble(); /// assert_eq!(row_idx, vec![0, 1]); /// assert_eq!(col_idx, vec![1, 2]); /// assert_eq!(val, vec![1.0, 2.0]); /// ``` pub fn disassemble(self) -> (Vec, Vec, Vec) { (self.row_indices, self.col_indices, self.values) } /// Construct the dense representation of the COO matrix. /// /// Duplicate entries are summed together. pub fn to_dense(&self) -> DMatrix where T: ClosedAdd + Zero, { let mut result = DMatrix::zeros(self.nrows, self.ncols); for (i, j, v) in self.triplet_iter() { result[(i, j)] += v.clone(); } result } }