//! Construction of givens rotations. use alga::general::ComplexField; use num::{Zero, One}; use crate::base::dimension::{Dim, U2}; use crate::base::constraint::{ShapeConstraint, DimEq}; use crate::base::storage::{Storage, StorageMut}; use crate::base::{Vector, Matrix}; /// A Givens rotation. #[derive(Debug, Clone, Copy)] pub struct GivensRotation { c: N::RealField, s: N } // Matrix = UnitComplex * Matrix impl GivensRotation { /// The Givents rotation that does nothing. pub fn identity() -> Self { Self { c: N::RealField::one(), s: N::zero() } } /// Initializes a Givens rotation from its components. /// /// The components are copies as-is. It is not checked whether they describe /// an actually valid Givens rotation. pub fn new_unchecked(c: N::RealField, s: N) -> Self { Self { c, s } } /// Initializes a Givens rotation from its non-normalized cosine an sine components. pub fn new(c: N, s: N) -> (Self, N) { Self::try_new(c, s, N::RealField::zero()).unwrap() } /// Initializes a Givens rotation form its non-normalized cosine an sine components. pub fn try_new(c: N, s: N, eps: N::RealField) -> Option<(Self, N)> { let (mod0, sign0) = c.to_exp(); let denom = (mod0 * mod0 + s.modulus_squared()).sqrt(); if denom > eps { let norm = sign0.scale(denom); let c = mod0 / denom; let s = s / norm; Some((Self { c, s }, norm)) } else { None } } /// Computes the rotation `R` required such that the `y` component of `R * v` is zero. /// /// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm /// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`. pub fn cancel_y>(v: &Vector) -> Option<(Self, N)> { if !v[1].is_zero() { let (mod0, sign0) = v[0].to_exp(); let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt(); let c = mod0 / denom; let s = -v[1] / sign0.scale(denom); let r = sign0.scale(denom); Some((Self { c, s }, r)) } else { None } } /// Computes the rotation `R` required such that the `x` component of `R * v` is zero. /// /// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm /// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`. pub fn cancel_x>(v: &Vector) -> Option<(Self, N)> { if !v[0].is_zero() { let (mod1, sign1) = v[1].to_exp(); let denom = (mod1 * mod1 + v[0].modulus_squared()).sqrt(); let c = mod1 / denom; let s = (v[0].conjugate() * sign1).unscale(denom); let r = sign1.scale(denom); Some((Self { c, s }, r)) } else { None } } /// The cos part of this roration. pub fn c(&self) -> N::RealField { self.c } /// The sin part of this roration. pub fn s(&self) -> N { self.s } /// The inverse of this givens rotation. pub fn inverse(&self) -> Self { Self { c: self.c, s: -self.s } } /// Performs the multiplication `rhs = self * rhs` in-place. pub fn rotate>( &self, rhs: &mut Matrix, ) where ShapeConstraint: DimEq, { assert_eq!( rhs.nrows(), 2, "Unit complex rotation: the input matrix must have exactly two rows." ); let s = self.s; let c = self.c; for j in 0..rhs.ncols() { unsafe { let a = *rhs.get_unchecked((0, j)); let b = *rhs.get_unchecked((1, j)); *rhs.get_unchecked_mut((0, j)) = a.scale(c) - s.conjugate() * b; *rhs.get_unchecked_mut((1, j)) = s * a + b.scale(c); } } } /// Performs the multiplication `lhs = lhs * self` in-place. pub fn rotate_rows>( &self, lhs: &mut Matrix, ) where ShapeConstraint: DimEq, { assert_eq!( lhs.ncols(), 2, "Unit complex rotation: the input matrix must have exactly two columns." ); let s = self.s; let c = self.c; // FIXME: can we optimize that to iterate on one column at a time ? for j in 0..lhs.nrows() { unsafe { let a = *lhs.get_unchecked((j, 0)); let b = *lhs.get_unchecked((j, 1)); *lhs.get_unchecked_mut((j, 0)) = a.scale(c) + s * b; *lhs.get_unchecked_mut((j, 1)) = -s.conjugate() * a + b.scale(c); } } } }