use std::num::{Float, abs}; use std::rand::random; use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot3, DMat, DVec, Indexable, Row, Col}; use na; use std::cmp::{min, max}; macro_rules! test_inv_mat_impl( ($t: ty) => ( for _ in range(0u, 10000) { let randmat : $t = random(); match na::inv(&randmat) { None => { }, Some(i) => assert!(na::approx_eq(&(i * randmat), &na::one())) } } ); ) macro_rules! test_transpose_mat_impl( ($t: ty) => ( for _ in range(0u, 10000) { let randmat : $t = random(); assert!(na::transpose(&na::transpose(&randmat)) == randmat); } ); ) macro_rules! test_qr_impl( ($t: ty) => ( for _ in range(0u, 10000) { let randmat : $t = random(); let (q, r) = na::qr(&randmat); let recomp = q * r; assert!(na::approx_eq(&randmat, &recomp)); } ); ) // NOTE: deactivated untile we get a better convergence rate. // macro_rules! test_eigen_qr_impl( // ($t: ty) => { // for _ in range(0u, 10000) { // let randmat : $t = random(); // // Make it symetric so that we can recompose the matrix to test at the end. // let randmat = na::transpose(&randmat) * randmat; // // let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &Float::epsilon(), 100); // // let diag: $t = Diag::from_diag(&eigenvalues); // // let recomp = eigenvectors * diag * na::transpose(&eigenvectors); // // println!("eigenvalues: {}", eigenvalues); // println!(" mat: {}", randmat); // println!("recomp: {}", recomp); // // assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2)); // } // } // ) #[test] fn test_transpose_mat1() { test_transpose_mat_impl!(Mat1); } #[test] fn test_transpose_mat2() { test_transpose_mat_impl!(Mat2); } #[test] fn test_transpose_mat3() { test_transpose_mat_impl!(Mat3); } #[test] fn test_transpose_mat4() { test_transpose_mat_impl!(Mat4); } #[test] fn test_transpose_mat5() { test_transpose_mat_impl!(Mat5); } #[test] fn test_transpose_mat6() { test_transpose_mat_impl!(Mat6); } #[test] fn test_inv_mat1() { test_inv_mat_impl!(Mat1); } #[test] fn test_inv_mat2() { test_inv_mat_impl!(Mat2); } #[test] fn test_inv_mat3() { test_inv_mat_impl!(Mat3); } #[test] fn test_inv_mat4() { test_inv_mat_impl!(Mat4); } #[test] fn test_inv_mat5() { test_inv_mat_impl!(Mat5); } #[test] fn test_inv_mat6() { test_inv_mat_impl!(Mat6); } #[test] fn test_rotation2() { for _ in range(0u, 10000) { let randmat: na::Rot2 = na::one(); let ang = Vec1::new(abs::(random()) % Float::pi()); assert!(na::approx_eq(&na::rotation(&na::append_rotation(&randmat, &ang)), &ang)); } } #[test] fn test_index_mat2() { let mat: Mat2 = random(); assert!(mat.at((0, 1)) == na::transpose(&mat).at((1, 0))); } #[test] fn test_inv_rotation3() { for _ in range(0u, 10000) { let randmat: Rot3 = na::one(); let dir: Vec3 = random(); let ang = na::normalize(&dir) * (abs::(random()) % Float::pi()); let rot = na::append_rotation(&randmat, &ang); assert!(na::approx_eq(&(na::transpose(&rot) * rot), &na::one())); } } #[test] fn test_mean_dmat() { let mat = DMat::from_row_vec( 3, 3, [ 1.0f64, 2.0, 3.0, 4.0f64, 5.0, 6.0, 7.0f64, 8.0, 9.0, ] ); assert!(na::approx_eq(&na::mean(&mat), &DVec::from_slice(3, [4.0f64, 5.0, 6.0]))); } #[test] fn test_cov_dmat() { let mat = DMat::from_row_vec( 5, 3, [ 4.0f64, 2.0, 0.60, 4.2f64, 2.1, 0.59, 3.9f64, 2.0, 0.58, 4.3f64, 2.1, 0.62, 4.1f64, 2.2, 0.63 ] ); let expected = DMat::from_row_vec( 3, 3, [ 0.025f64, 0.0075, 0.00175, 0.0075f64, 0.007, 0.00135, 0.00175f64, 0.00135, 0.00043 ] ); assert!(na::approx_eq(&na::cov(&mat), &expected)); } #[test] fn test_transpose_dmat() { let mat = DMat::from_row_vec( 8, 4, [ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); assert!(na::transpose(&na::transpose(&mat)) == mat); } #[test] fn test_dmat_from_vec() { let mat1 = DMat::from_row_vec( 8, 4, [ 1i32, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); let mat2 = DMat::from_col_vec( 8, 4, [ 1i32, 5, 9, 13, 17, 21, 25, 29, 2i32, 6, 10, 14, 18, 22, 26, 30, 3i32, 7, 11, 15, 19, 23, 27, 31, 4i32, 8, 12, 16, 20, 24, 28, 32 ] ); println!("mat1: {:?}, mat2: {:?}", mat1, mat2); assert!(mat1 == mat2); } #[test] fn test_qr() { for _ in range(0u, 10) { let dim1: uint = random(); let dim2: uint = random(); let rows = min(40, max(dim1, dim2)); let cols = min(40, min(dim1, dim2)); let randmat: DMat = DMat::new_random(rows, cols); let (q, r) = na::qr(&randmat); let recomp = q * r; assert!(na::approx_eq(&randmat, &recomp)); } } #[test] fn test_qr_mat1() { test_qr_impl!(Mat1); } #[test] fn test_qr_mat2() { test_qr_impl!(Mat2); } #[test] fn test_qr_mat3() { test_qr_impl!(Mat3); } #[test] fn test_qr_mat4() { test_qr_impl!(Mat4); } #[test] fn test_qr_mat5() { test_qr_impl!(Mat5); } #[test] fn test_qr_mat6() { test_qr_impl!(Mat6); } // NOTE: deactivated untile we get a better convergence rate. // #[test] // fn test_eigen_qr_mat1() { // test_eigen_qr_impl!(Mat1); // } // // #[test] // fn test_eigen_qr_mat2() { // test_eigen_qr_impl!(Mat2); // } // // #[test] // fn test_eigen_qr_mat3() { // test_eigen_qr_impl!(Mat3); // } // // #[test] // fn test_eigen_qr_mat4() { // test_eigen_qr_impl!(Mat4); // } // // #[test] // fn test_eigen_qr_mat5() { // test_eigen_qr_impl!(Mat5); // } // // #[test] // fn test_eigen_qr_mat6() { // test_eigen_qr_impl!(Mat6); // } #[test] fn test_from_fn() { let actual: DMat = DMat::from_fn(3, 4, |i, j| 10 * i + j); let expected: DMat = DMat::from_row_vec(3, 4, [0_0, 0_1, 0_2, 0_3, 1_0, 1_1, 1_2, 1_3, 2_0, 2_1, 2_2, 2_3 ]); assert_eq!(actual, expected); } #[test] fn test_row_3() { let mat = Mat3::new(0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); let second_row = mat.row(1); let second_col = mat.col(1); assert!(second_row == Vec3::new(3.0, 4.0, 5.0)); assert!(second_col == Vec3::new(1.0, 4.0, 7.0)); }