/*! # nalgebra **nalgebra** is a low-dimensional linear algebra library written for Rust targeting: * General-purpose linear algebra (still lacks a lot of features…) * Real time computer graphics. * Real time computer physics. ## Using **nalgebra** You will need the last stable build of the [rust compiler](http://www.rust-lang.org) and the official package manager: [cargo](https://github.com/rust-lang/cargo). Simply add the following to your `Cargo.toml` file: ``` [dependencies] nalgebra = "0.10.*" ``` All the functionality of **nalgebra** is grouped in one place: the root module `nalgebra::`. This module re-exports everything and includes free functions for all traits methods performing out-of-place operations. Thus, you can import the whole prelude using: ```.ignore use nalgebra::*; ``` However, the recommended way to use **nalgebra** is to import types and traits explicitly, and call free-functions using the `na::` prefix: ```.rust extern crate nalgebra as na; use na::{Vector3, Rotation3, Rotation}; fn main() { let a = Vector3::new(1.0f64, 1.0, 1.0); let mut b = Rotation3::new(na::zero()); b.append_rotation_mut(&a); assert!(na::approx_eq(&na::rotation(&b), &a)); } ``` ## Features **nalgebra** is meant to be a general-purpose, low-dimensional, linear algebra library, with an optimized set of tools for computer graphics and physics. Those features include: * Vectors with predefined static sizes: `Vector1`, `Vector2`, `Vector3`, `Vector4`, `Vector5`, `Vector6`. * Vector with a user-defined static size: `VectorN` (available only with the `generic_sizes` feature). * Points with static sizes: `Point1`, `Point2`, `Point3`, `Point4`, `Point5`, `Point6`. * Square matrices with static sizes: `Matrix1`, `Matrix2`, `Matrix3`, `Matrix4`, `Matrix5`, `Matrix6 `. * Rotation matrices: `Rotation2`, `Rotation3` * Quaternions: `Quaternion`, `Unit`. * Unit-sized values (unit vectors, unit quaternions, etc.): `Unit`, e.g., `Unit>`. * Isometries (translation ⨯ rotation): `Isometry2`, `Isometry3` * Similarity transformations (translation ⨯ rotation ⨯ uniform scale): `Similarity2`, `Similarity3`. * 3D projections for computer graphics: `Persp3`, `PerspMatrix3`, `Ortho3`, `OrthoMatrix3`. * Dynamically sized heap-allocated vector: `DVector`. * Dynamically sized stack-allocated vectors with a maximum size: `DVector1` to `DVector6`. * Dynamically sized heap-allocated (square or rectangular) matrix: `DMatrix`. * Linear algebra and data analysis operators: `Covariance`, `Mean`, `qr`, `cholesky`. * Almost one trait per functionality: useful for generic programming. */ #![deny(non_camel_case_types)] #![deny(unused_parens)] #![deny(non_upper_case_globals)] #![deny(unused_qualifications)] #![deny(unused_results)] #![warn(missing_docs)] #![doc(html_root_url = "http://nalgebra.org/doc")] extern crate rustc_serialize; extern crate rand; extern crate num; #[cfg(feature="generic_sizes")] extern crate generic_array; #[cfg(feature="arbitrary")] extern crate quickcheck; #[cfg(feature="abstract_algebra")] extern crate algebra; use std::cmp; use std::ops::{Neg, Mul}; use num::{Zero, One}; pub use traits::{ Absolute, AbsoluteRotate, ApproxEq, Axpy, Basis, BaseFloat, BaseNum, Bounded, Cast, Column, ColumnSlice, RowSlice, Covariance, Cross, CrossMatrix, Determinant, Diagonal, Dimension, Dot, EigenQR, Eye, FloatPoint, FloatVector, FromHomogeneous, Indexable, Inverse, Iterable, IterableMut, Matrix, Mean, Norm, NumPoint, NumVector, Origin, Outer, PartialOrder, PartialOrdering, PointAsVector, Repeat, Rotate, Rotation, RotationMatrix, RotationWithTranslation, RotationTo, Row, Shape, SquareMatrix, ToHomogeneous, Transform, Transformation, Translate, Translation, Transpose, UniformSphereSample }; #[cfg(feature="generic_sizes")] pub use structs::VectorN; pub use structs::{ Identity, DMatrix, DMatrix1, DMatrix2, DMatrix3, DMatrix4, DMatrix5, DMatrix6, DVector, DVector1, DVector2, DVector3, DVector4, DVector5, DVector6, Isometry2, Isometry3, Similarity2, Similarity3, Matrix1, Matrix2, Matrix3, Matrix4, Matrix5, Matrix6, Rotation2, Rotation3, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6, Point1, Point2, Point3, Point4, Point5, Point6, Perspective3, PerspectiveMatrix3, Orthographic3, OrthographicMatrix3, Quaternion, UnitQuaternion, Unit }; pub use linalg::{ qr, householder_matrix, cholesky, hessenberg }; mod structs; mod traits; mod linalg; mod macros; // mod lower_triangular; // mod chol; /// Change the input value to ensure it is on the range `[min, max]`. #[inline] pub fn clamp(val: T, min: T, max: T) -> T { if val > min { if val < max { val } else { max } } else { min } } /// Same as `cmp::max`. #[inline] pub fn max(a: T, b: T) -> T { cmp::max(a, b) } /// Same as `cmp::min`. #[inline] pub fn min(a: T, b: T) -> T { cmp::min(a, b) } /// Returns the infimum of `a` and `b`. #[inline] pub fn inf(a: &T, b: &T) -> T { PartialOrder::inf(a, b) } /// Returns the supremum of `a` and `b`. #[inline] pub fn sup(a: &T, b: &T) -> T { PartialOrder::sup(a, b) } /// Compare `a` and `b` using a partial ordering relation. #[inline] pub fn partial_cmp(a: &T, b: &T) -> PartialOrdering { PartialOrder::partial_cmp(a, b) } /// Returns `true` iff `a` and `b` are comparable and `a < b`. #[inline] pub fn partial_lt(a: &T, b: &T) -> bool { PartialOrder::partial_lt(a, b) } /// Returns `true` iff `a` and `b` are comparable and `a <= b`. #[inline] pub fn partial_le(a: &T, b: &T) -> bool { PartialOrder::partial_le(a, b) } /// Returns `true` iff `a` and `b` are comparable and `a > b`. #[inline] pub fn partial_gt(a: &T, b: &T) -> bool { PartialOrder::partial_gt(a, b) } /// Returns `true` iff `a` and `b` are comparable and `a >= b`. #[inline] pub fn partial_ge(a: &T, b: &T) -> bool { PartialOrder::partial_ge(a, b) } /// Return the minimum of `a` and `b` if they are comparable. #[inline] pub fn partial_min<'a, T: PartialOrder>(a: &'a T, b: &'a T) -> Option<&'a T> { PartialOrder::partial_min(a, b) } /// Return the maximum of `a` and `b` if they are comparable. #[inline] pub fn partial_max<'a, T: PartialOrder>(a: &'a T, b: &'a T) -> Option<&'a T> { PartialOrder::partial_max(a, b) } /// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to /// `min` or `max`. #[inline] pub fn partial_clamp<'a, T: PartialOrder>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> { PartialOrder::partial_clamp(value, min, max) } // // // Constructors // // /// Create a special identity object. /// /// Same as `Identity::new()`. #[inline] pub fn identity() -> Identity { Identity::new() } /// Create a zero-valued value. /// /// This is the same as `std::num::zero()`. #[inline] pub fn zero() -> T { Zero::zero() } /// Tests is a value is iqual to zero. #[inline] pub fn is_zero(val: &T) -> bool { val.is_zero() } /// Create a one-valued value. /// /// This is the same as `std::num::one()`. #[inline] pub fn one() -> T { One::one() } // // // Geometry // // /// Returns the trivial origin of an affine space. #[inline] pub fn origin() -> P { Origin::origin() } /// Returns the center of two points. #[inline] pub fn center>(a: &P, b: &P) -> P where

::Vector: Norm { (*a + b.to_vector()) / ::cast(2.0) } /* * FloatPoint */ /// Returns the distance between two points. #[inline] pub fn distance>(a: &P, b: &P) -> N where

::Vector: Norm { a.distance(b) } /// Returns the squared distance between two points. #[inline] pub fn distance_squared>(a: &P, b: &P) -> N where

::Vector: Norm { a.distance_squared(b) } /* * Translation */ /// Gets the translation applicable by `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vector3, Isometry3}; /// /// fn main() { /// let t = Isometry3::new(Vector3::new(1.0f64, 1.0, 1.0), na::zero()); /// let trans = na::translation(&t); /// /// assert!(trans == Vector3::new(1.0, 1.0, 1.0)); /// } /// ``` #[inline] pub fn translation>(m: &M) -> V { m.translation() } /// Gets the inverse translation applicable by `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vector3, Isometry3}; /// /// fn main() { /// let t = Isometry3::new(Vector3::new(1.0f64, 1.0, 1.0), na::zero()); /// let itrans = na::inverse_translation(&t); /// /// assert!(itrans == Vector3::new(-1.0, -1.0, -1.0)); /// } /// ``` #[inline] pub fn inverse_translation>(m: &M) -> V { m.inverse_translation() } /// Applies the translation `v` to a copy of `m`. #[inline] pub fn append_translation>(m: &M, v: &V) -> M { Translation::append_translation(m, v) } /* * Translate

*/ /// Applies a translation to a point. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Point3, Vector3, Isometry3}; /// /// fn main() { /// let t = Isometry3::new(Vector3::new(1.0f64, 1.0, 1.0), na::zero()); /// let p = Point3::new(2.0, 2.0, 2.0); /// /// let tp = na::translate(&t, &p); /// /// assert!(tp == Point3::new(3.0, 3.0, 3.0)) /// } /// ``` #[inline] pub fn translate>(m: &M, p: &P) -> P { m.translate(p) } /// Applies an inverse translation to a point. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Point3, Vector3, Isometry3}; /// /// fn main() { /// let t = Isometry3::new(Vector3::new(1.0f64, 1.0, 1.0), na::zero()); /// let p = Point3::new(2.0, 2.0, 2.0); /// /// let tp = na::inverse_translate(&t, &p); /// /// assert!(na::approx_eq(&tp, &Point3::new(1.0, 1.0, 1.0))) /// } #[inline] pub fn inverse_translate>(m: &M, p: &P) -> P { m.inverse_translate(p) } /* * Rotation */ /// Gets the rotation applicable by `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vector3, Rotation3}; /// /// fn main() { /// let t = Rotation3::new(Vector3::new(1.0f64, 1.0, 1.0)); /// /// assert!(na::approx_eq(&na::rotation(&t), &Vector3::new(1.0, 1.0, 1.0))); /// } /// ``` #[inline] pub fn rotation>(m: &M) -> V { m.rotation() } /// Gets the inverse rotation applicable by `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vector3, Rotation3}; /// /// fn main() { /// let t = Rotation3::new(Vector3::new(1.0f64, 1.0, 1.0)); /// /// assert!(na::approx_eq(&na::inverse_rotation(&t), &Vector3::new(-1.0, -1.0, -1.0))); /// } /// ``` #[inline] pub fn inverse_rotation>(m: &M) -> V { m.inverse_rotation() } // FIXME: this example is a bit shity /// Applies the rotation `v` to a copy of `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vector3, Rotation3}; /// /// fn main() { /// let t = Rotation3::new(Vector3::new(0.0f64, 0.0, 0.0)); /// let v = Vector3::new(1.0, 1.0, 1.0); /// let rt = na::append_rotation(&t, &v); /// /// assert!(na::approx_eq(&na::rotation(&rt), &Vector3::new(1.0, 1.0, 1.0))) /// } /// ``` #[inline] pub fn append_rotation>(m: &M, v: &V) -> M { Rotation::append_rotation(m, v) } // FIXME: this example is a bit shity /// Pre-applies the rotation `v` to a copy of `m`. /// /// ```rust /// extern crate nalgebra as na; /// use na::{Vector3, Rotation3}; /// /// fn main() { /// let t = Rotation3::new(Vector3::new(0.0f64, 0.0, 0.0)); /// let v = Vector3::new(1.0, 1.0, 1.0); /// let rt = na::prepend_rotation(&t, &v); /// /// assert!(na::approx_eq(&na::rotation(&rt), &Vector3::new(1.0, 1.0, 1.0))) /// } /// ``` #[inline] pub fn prepend_rotation>(m: &M, v: &V) -> M { Rotation::prepend_rotation(m, v) } /* * Rotate */ /// Applies a rotation to a vector. /// /// ```rust /// extern crate nalgebra as na; /// use na::{BaseFloat, Rotation3, Vector3}; /// /// fn main() { /// let t = Rotation3::new(Vector3::new(0.0f64, 0.0, 0.5 * ::pi())); /// let v = Vector3::new(1.0, 0.0, 0.0); /// /// let tv = na::rotate(&t, &v); /// /// assert!(na::approx_eq(&tv, &Vector3::new(0.0, 1.0, 0.0))) /// } /// ``` #[inline] pub fn rotate>(m: &M, v: &V) -> V { m.rotate(v) } /// Applies an inverse rotation to a vector. /// /// ```rust /// extern crate nalgebra as na; /// use na::{BaseFloat, Rotation3, Vector3}; /// /// fn main() { /// let t = Rotation3::new(Vector3::new(0.0f64, 0.0, 0.5 * ::pi())); /// let v = Vector3::new(1.0, 0.0, 0.0); /// /// let tv = na::inverse_rotate(&t, &v); /// /// assert!(na::approx_eq(&tv, &Vector3::new(0.0, -1.0, 0.0))) /// } /// ``` #[inline] pub fn inverse_rotate>(m: &M, v: &V) -> V { m.inverse_rotate(v) } /* * RotationWithTranslation */ /// Rotates a copy of `m` by `amount` using `center` as the pivot point. #[inline] pub fn append_rotation_wrt_point + Copy, AV, M: RotationWithTranslation>( m: &M, amount: &AV, center: &LV) -> M { RotationWithTranslation::append_rotation_wrt_point(m, amount, center) } /// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point. #[inline] pub fn append_rotation_wrt_center + Copy, AV, M: RotationWithTranslation>( m: &M, amount: &AV) -> M { RotationWithTranslation::append_rotation_wrt_center(m, amount) } /* * RotationTo */ /// Computes the angle of the rotation needed to transfom `a` to `b`. #[inline] pub fn angle_between(a: &V, b: &V) -> V::AngleType { a.angle_to(b) } /// Computes the rotation needed to transform `a` to `b`. #[inline] pub fn rotation_between(a: &V, b: &V) -> V::DeltaRotationType { a.rotation_to(b) } /* * RotationMatrix */ /// Builds a rotation matrix from `r`. #[inline] pub fn to_rotation_matrix(r: &R) -> M where R: RotationMatrix, M: SquareMatrix + Rotation + Copy, LV: Mul { // FIXME: rust-lang/rust#20413 r.to_rotation_matrix() } /* * AbsoluteRotate */ /// Applies a rotation using the absolute values of its components. #[inline] pub fn absolute_rotate>(m: &M, v: &V) -> V { m.absolute_rotate(v) } /* * Transformation */ /// Gets the transformation applicable by `m`. #[inline] pub fn transformation>(m: &M) -> T { m.transformation() } /// Gets the inverse transformation applicable by `m`. #[inline] pub fn inverse_transformation>(m: &M) -> T { m.inverse_transformation() } /// Gets a transformed copy of `m`. #[inline] pub fn append_transformation>(m: &M, t: &T) -> M { Transformation::append_transformation(m, t) } /* * Transform */ /// Applies a transformation to a vector. #[inline] pub fn transform>(m: &M, v: &V) -> V { m.transform(v) } /// Applies an inverse transformation to a vector. #[inline] pub fn inverse_transform>(m: &M, v: &V) -> V { m.inverse_transform(v) } /* * Dot */ /// Computes the dot product of two vectors. #[inline] pub fn dot, N>(a: &V, b: &V) -> N { Dot::dot(a, b) } /* * Norm */ /// Computes the L2 norm of a vector. #[inline] pub fn norm(v: &V) -> V::NormType { Norm::norm(v) } /// Computes the squared L2 norm of a vector. #[inline] pub fn norm_squared(v: &V) -> V::NormType { Norm::norm_squared(v) } /// Gets the normalized version of a vector. #[inline] pub fn normalize(v: &V) -> V { Norm::normalize(v) } /// Gets the normalized version of a vector or `None` if its norm is smaller than `min_norm`. #[inline] pub fn try_normalize(v: &V, min_norm: V::NormType) -> Option { Norm::try_normalize(v, min_norm) } /* * Determinant */ /// Computes the determinant of a square matrix. #[inline] pub fn determinant, N>(m: &M) -> N { Determinant::determinant(m) } /* * Cross */ /// Computes the cross product of two vectors. #[inline] pub fn cross(a: &LV, b: &LV) -> LV::CrossProductType { Cross::cross(a, b) } /* * CrossMatrix */ /// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross /// product. #[inline] pub fn cross_matrix, M>(v: &V) -> M { CrossMatrix::cross_matrix(v) } /* * ToHomogeneous */ /// Converts a matrix or vector to homogeneous coordinates. #[inline] pub fn to_homogeneous, Res>(m: &M) -> Res { ToHomogeneous::to_homogeneous(m) } /* * FromHomogeneous */ /// Converts a matrix or vector from homogeneous coordinates. /// /// w-normalization is appied. #[inline] pub fn from_homogeneous>(m: &M) -> Res { FromHomogeneous::from(m) } /* * UniformSphereSample */ /// Samples the unit sphere living on the dimension as the samples types. /// /// The number of sampling point is implementation-specific. It is always uniform. #[inline] pub fn sample_sphere(f: F) { UniformSphereSample::sample(f) } // // // Operations // // /* * AproxEq */ /// Tests approximate equality. #[inline] pub fn approx_eq, N>(a: &T, b: &T) -> bool { ApproxEq::approx_eq(a, b) } /// Tests approximate equality using a custom epsilon. #[inline] pub fn approx_eq_eps, N>(a: &T, b: &T, eps: &N) -> bool { ApproxEq::approx_eq_eps(a, b, eps) } /* * Absolute */ /// Computes a component-wise absolute value. #[inline] pub fn abs, Res>(m: &M) -> Res { Absolute::abs(m) } /* * Inverse */ /// Gets an inverted copy of a matrix. #[inline] pub fn inverse(m: &M) -> Option { Inverse::inverse(m) } /* * Transpose */ /// Gets a transposed copy of a matrix. #[inline] pub fn transpose(m: &M) -> M { Transpose::transpose(m) } /* * Outer */ /// Computes the outer product of two vectors. #[inline] pub fn outer(a: &V, b: &V) -> V::OuterProductType { Outer::outer(a, b) } /* * Covariance */ /// Computes the covariance of a set of observations. #[inline] pub fn covariance, Res>(observations: &M) -> Res { Covariance::covariance(observations) } /* * Mean */ /// Computes the mean of a set of observations. #[inline] pub fn mean>(observations: &M) -> N { Mean::mean(observations) } /* * EigenQR */ /// Computes the eigenvalues and eigenvectors of a square matrix usin the QR algorithm. #[inline] pub fn eigen_qr(m: &M, eps: &N, niter: usize) -> (M, V) where V: Mul, M: EigenQR { EigenQR::eigen_qr(m, eps, niter) } // // // Structure // // /* * Eye */ /// Construct the identity matrix for a given dimension #[inline] pub fn new_identity(dimension: usize) -> M { Eye::new_identity(dimension) } /* * Repeat */ /// Create an object by repeating a value. /// /// Same as `Identity::new()`. #[inline] pub fn repeat>(val: N) -> T { Repeat::repeat(val) } /* * Basis */ /// Computes the canonical basis for a given dimension. #[inline] pub fn canonical_basis bool>(f: F) { Basis::canonical_basis(f) } /// Computes the basis of the orthonormal subspace of a given vector. #[inline] pub fn orthonormal_subspace_basis bool>(v: &V, f: F) { Basis::orthonormal_subspace_basis(v, f) } /// Gets the (0-based) i-th element of the canonical basis of V. #[inline] pub fn canonical_basis_element(i: usize) -> Option { Basis::canonical_basis_element(i) } /* * Row */ /* * Column */ /* * Diagonal */ /// Gets the diagonal of a square matrix. #[inline] pub fn diagonal, V>(m: &M) -> V { m.diagonal() } /* * Dimension */ /// Gets the dimension an object lives in. /// /// Same as `Dimension::dimension::(None::)`. #[inline] pub fn dimension() -> usize { Dimension::dimension(None::) } /// Gets the indexable range of an object. #[inline] pub fn shape, I>(v: &V) -> I { v.shape() } /* * Cast */ /// Converts an object from one type to another. /// /// For primitive types, this is the same as the `as` keywords. /// The following properties are preserved by a cast: /// /// * Type-level geometric invariants cannot be broken (eg. a cast from Rotation3 to Rotation3 is /// not possible) /// * A cast to a type with more type-level invariants cannot be done (eg. a cast from Matrix to /// Rotation3 is not possible) /// * For primitive types an unbounded cast is done using the `as` keyword (this is different from /// the standard library which makes bound-checking to ensure eg. that a i64 is not out of the /// range of an i32 when a cast from i64 to i32 is done). /// * A cast does not affect the dimension of an algebraic object. Note that this prevents an /// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose. #[inline] pub fn cast>(t: T) -> U { Cast::from(t) } /* * Indexable */