#[test] use std::vec; #[test] use std::iterator::IteratorUtil; #[test] use std::num::{Zero, One}; #[test] use std::rand::{random}; #[test] use std::cmp::ApproxEq; #[test] use dim3::vec3::Vec3; #[test] use dim2::vec2::Vec2; #[test] use dim1::vec1::Vec1; #[test] use ndim::nvec::NVec; #[test] use traits::dim::d7; #[test] use traits::basis::Basis; #[test] use traits::cross::Cross; #[test] use traits::dot::Dot; #[test] use traits::norm::Norm; #[test] use traits::flatten::Flatten; macro_rules! test_commut_dot_impl( ($t: ty) => ( for 10000.times { let v1 : $t = random(); let v2 : $t = random(); assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1))); } ); ) macro_rules! test_basis_impl( ($t: ty) => ( for 10000.times { let basis = Basis::canonical_basis::<$t>(); // check vectors form an ortogonal basis assert!( do basis.iter().zip(basis.iter()).all |(e1, e2)| { e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero()) } ); // check vectors form an orthonormal basis assert!(basis.all(|e| e.norm().approx_eq(&One::one()))); } ); ) macro_rules! test_subspace_basis_impl( ($t: ty) => ( for 10000.times { let v : Vec3 = random(); let v1 = v.normalized(); let subbasis = v1.orthogonal_subspace_basis(); // check vectors are orthogonal to v1 assert!(subbasis.all(|e| v1.dot(e).approx_eq(&Zero::zero()))); // check vectors form an ortogonal basis assert!( do subbasis.iter().zip(subbasis.iter()).all |(e1, e2)| { e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero()) } ); // check vectors form an orthonormal basis assert!(subbasis.all(|e| e.norm().approx_eq(&One::one()))); } ); ) macro_rules! test_flatten_impl( ($t: ty, $n: ty) => ( for 10000.times { let v: $t = random(); let mut l: ~[$n] = vec::from_elem(42 + Flatten::flat_size::<$n, $t>(), Zero::zero::<$n>()); v.flatten_to(l, 42); assert!(Flatten::from_flattened::<$n, $t>(v.flatten(), 0) == v); assert!(Flatten::from_flattened::<$n, $t>(l, 42) == v); } ) ) #[test] fn test_cross_vec3() { for 10000.times { let v1 : Vec3 = random(); let v2 : Vec3 = random(); let v3 : Vec3 = v1.cross(&v2); assert!(v3.dot(&v2).approx_eq(&Zero::zero())); assert!(v3.dot(&v1).approx_eq(&Zero::zero())); } } #[test] fn test_commut_dot_nvec() { test_commut_dot_impl!(NVec); } #[test] fn test_commut_dot_vec3() { test_commut_dot_impl!(Vec3); } #[test] fn test_commut_dot_vec2() { test_commut_dot_impl!(Vec2); } #[test] fn test_commut_dot_vec1() { test_commut_dot_impl!(Vec1); } #[test] fn test_basis_vec1() { test_basis_impl!(Vec1); } #[test] fn test_basis_vec2() { test_basis_impl!(Vec2); } #[test] fn test_basis_vec3() { test_basis_impl!(Vec3); } #[test] fn test_basis_nvec() { test_basis_impl!(NVec); } #[test] fn test_subspace_basis_vec1() { test_subspace_basis_impl!(Vec1); } #[test] fn test_subspace_basis_vec2() { test_subspace_basis_impl!(Vec2); } #[test] fn test_subspace_basis_vec3() { test_subspace_basis_impl!(Vec3); } #[test] fn test_subspace_basis_nvec() { test_subspace_basis_impl!(NVec); } #[test] fn test_flatten_vec1() { test_flatten_impl!(Vec1, f64); } #[test] fn test_flatten_vec2() { test_flatten_impl!(Vec2, f64); } #[test] fn test_flatten_vec3() { test_flatten_impl!(Vec3, f64); } #[test] fn test_flatten_nvec() { test_flatten_impl!(NVec, f64); }