use core::num::{Zero, Algebraic}; use traits::dim::Dim; use traits::dot::Dot; use traits::cross::Cross; #[deriving(Eq)] pub struct Vec3 { x : T, y : T, z : T } pub fn Vec3(x: T, y: T, z: T) -> Vec3 { Vec3 {x: x, y: y, z: z} } impl Dim for Vec3 { fn dim() -> uint { 3 } } impl> Add, Vec3> for Vec3 { fn add(&self, other: &Vec3) -> Vec3 { Vec3(self.x + other.x, self.y + other.y, self.z + other.z) } } impl> Sub, Vec3> for Vec3 { fn sub(&self, other: &Vec3) -> Vec3 { Vec3(self.x - other.x, self.y - other.y, self.z - other.z) } } impl> Neg> for Vec3 { fn neg(&self) -> Vec3 { Vec3(-self.x, -self.y, -self.z) } } impl + Add + Algebraic> Dot for Vec3 { fn dot(&self, other : &Vec3) -> T { self.x * other.x + self.y * other.y + self.z * other.z } fn sqnorm(&self) -> T { self.dot(self) } fn norm(&self) -> T { self.sqnorm().sqrt() } } impl + Sub> Cross> for Vec3 { fn cross(&self, other : &Vec3) -> Vec3 { Vec3( self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x ) } } impl Zero for Vec3 { fn zero() -> Vec3 { let _0 = Zero::zero(); Vec3(_0, _0, _0) } fn is_zero(&self) -> bool { self.x.is_zero() && self.y.is_zero() && self.z.is_zero() } } impl ToStr for Vec3 { fn to_str(&self) -> ~str { ~"Vec3 " + "{ x : " + self.x.to_str() + ", y : " + self.y.to_str() + ", z : " + self.z.to_str() + " }" } }