extern crate nalgebra as na; use na::allocator::Allocator; use na::dimension::Dim; use na::{DefaultAllocator, OVector, RealField, Unit, Vector2, Vector3}; /// Reflects a vector wrt. the hyperplane with normal `plane_normal`. fn reflect_wrt_hyperplane_with_dimensional_genericity<T: RealField, D: Dim>( plane_normal: &Unit<OVector<T, D>>, vector: &OVector<T, D>, ) -> OVector<T, D> where T: RealField, D: Dim, DefaultAllocator: Allocator<T, D>, { let n = plane_normal.as_ref(); // Get the underlying V. vector - n * (n.dot(vector) * na::convert(2.0)) } /// Reflects a 2D vector wrt. the 2D line with normal `plane_normal`. fn reflect_wrt_hyperplane2<T>(plane_normal: &Unit<Vector2<T>>, vector: &Vector2<T>) -> Vector2<T> where T: RealField, { let n = plane_normal.as_ref(); // Get the underlying Vector2 vector - n * (n.dot(vector) * na::convert(2.0)) } /// Reflects a 3D vector wrt. the 3D plane with normal `plane_normal`. /// /!\ This is an exact replicate of `reflect_wrt_hyperplane2, but for 3D. fn reflect_wrt_hyperplane3<T>(plane_normal: &Unit<Vector3<T>>, vector: &Vector3<T>) -> Vector3<T> where T: RealField, { let n = plane_normal.as_ref(); // Get the underlying Vector3 vector - n * (n.dot(vector) * na::convert(2.0)) } fn main() { let plane2 = Vector2::y_axis(); // 2D plane normal. let plane3 = Vector3::y_axis(); // 3D plane normal. let v2 = Vector2::new(1.0, 2.0); // 2D vector to be reflected. let v3 = Vector3::new(1.0, 2.0, 3.0); // 3D vector to be reflected. // We can call the same function for 2D and 3D. assert_eq!( reflect_wrt_hyperplane_with_dimensional_genericity(&plane2, &v2).y, -2.0 ); assert_eq!( reflect_wrt_hyperplane_with_dimensional_genericity(&plane3, &v3).y, -2.0 ); // Call each specific implementation depending on the dimension. assert_eq!(reflect_wrt_hyperplane2(&plane2, &v2).y, -2.0); assert_eq!(reflect_wrt_hyperplane3(&plane3, &v3).y, -2.0); }