#[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; use num::Zero; use num_complex::Complex; use simba::scalar::RealField; use crate::ComplexHelper; use na::allocator::Allocator; use na::dimension::{Const, Dim}; use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; /// Eigendecomposition of a real square matrix with complex eigenvalues. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde( bound(serialize = "DefaultAllocator: Allocator + Allocator, OVector: Serialize, OMatrix: Serialize") ) )] #[cfg_attr( feature = "serde-serialize", serde( bound(deserialize = "DefaultAllocator: Allocator + Allocator, OVector: Serialize, OMatrix: Deserialize<'de>") ) )] #[derive(Clone, Debug)] pub struct QZ where DefaultAllocator: Allocator + Allocator, { alphar: OVector, alphai: OVector, beta: OVector, vsl: OMatrix, s: OMatrix, vsr: OMatrix, t: OMatrix } impl Copy for QZ where DefaultAllocator: Allocator + Allocator, OMatrix: Copy, OVector: Copy, { } impl QZ where DefaultAllocator: Allocator + Allocator, { /// Computes the eigenvalues and real Schur form of the matrix `m`. /// /// Panics if the method did not converge. pub fn new(a: OMatrix, b: OMatrix) -> Self { Self::try_new(a,b).expect("Schur decomposition: convergence failed.") } /// Computes the eigenvalues and real Schur form of the matrix `m`. /// /// Returns `None` if the method did not converge. pub fn try_new(mut a: OMatrix, mut b: OMatrix) -> Option { assert!( a.is_square() && b.is_square(), "Unable to compute the qz decomposition of non-square matrices." ); // another assert to compare shape? let (nrows, ncols) = a.shape_generic(); let n = nrows.value(); let lda = n as i32; let ldb = lda.clone(); let mut info = 0; let mut alphar = Matrix::zeros_generic(nrows, Const::<1>); let mut alphai = Matrix::zeros_generic(nrows, Const::<1>); let mut beta = Matrix::zeros_generic(nrows, Const::<1>); let mut vsl = Matrix::zeros_generic(nrows, ncols); let mut vsr = Matrix::zeros_generic(nrows, ncols); // Placeholders: let mut bwork = [0i32]; let mut unused = 0; let lwork = T::xgges_work_size( b'V', b'V', b'N', n as i32, a.as_mut_slice(), n as i32, b.as_mut_slice(), n as i32, &mut unused, alphar.as_mut_slice(), alphai.as_mut_slice(), beta.as_mut_slice(), vsl.as_mut_slice(), n as i32, vsr.as_mut_slice(), n as i32, &mut bwork, &mut info, ); lapack_check!(info); let mut work = vec![T::zero(); lwork as usize]; T::xgges( b'V', b'V', b'N', n as i32, a.as_mut_slice(), n as i32, b.as_mut_slice(), n as i32, &mut unused, alphar.as_mut_slice(), alphai.as_mut_slice(), beta.as_mut_slice(), vsl.as_mut_slice(), n as i32, vsr.as_mut_slice(), n as i32, &mut work, lwork, &mut bwork, &mut info, ); lapack_check!(info); Some(QZ {alphar, alphai, beta, vsl, s:a, vsr, t:b}) } /// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the /// decomposed matrix equals `Q * T * Q.transpose()`. pub fn unpack(self) -> (OMatrix, OMatrix, OMatrix, OMatrix){ (self.vsl, self.s, self.t, self.vsr) } /// computes the generalized eigenvalues #[must_use] pub fn eigenvalues(&self) -> OVector, D> where DefaultAllocator: Allocator, D>, { let mut out = Matrix::zeros_generic(self.t.shape_generic().0, Const::<1>); for i in 0..out.len() { out[i] = Complex::new(self.alphar[i].clone()/self.beta[i].clone(), self.alphai[i].clone()/self.beta[i].clone()) } out } } /* * * Lapack functions dispatch. * */ /// Trait implemented by scalars for which Lapack implements the RealField QZ decomposition. pub trait QZScalar: Scalar { #[allow(missing_docs)] fn xgges( jobvsl: u8, jobvsr: u8, sort: u8, // select: ??? n: i32, a: &mut [Self], lda: i32, b: &mut [Self], ldb: i32, sdim: &mut i32, alphar: &mut [Self], alphai: &mut [Self], beta : &mut [Self], vsl: &mut [Self], ldvsl: i32, vsr: &mut [Self], ldvsr: i32, work: &mut [Self], lwork: i32, bwork: &mut [i32], info: &mut i32 ); #[allow(missing_docs)] fn xgges_work_size( jobvsl: u8, jobvsr: u8, sort: u8, // select: ??? n: i32, a: &mut [Self], lda: i32, b: &mut [Self], ldb: i32, sdim: &mut i32, alphar: &mut [Self], alphai: &mut [Self], beta : &mut [Self], vsl: &mut [Self], ldvsl: i32, vsr: &mut [Self], ldvsr: i32, bwork: &mut [i32], info: &mut i32 ) -> i32; } macro_rules! real_eigensystem_scalar_impl ( ($N: ty, $xgges: path) => ( impl QZScalar for $N { #[inline] fn xgges(jobvsl: u8, jobvsr: u8, sort: u8, // select: ??? n: i32, a: &mut [$N], lda: i32, b: &mut [$N], ldb: i32, sdim: &mut i32, alphar: &mut [$N], alphai: &mut [$N], beta : &mut [$N], vsl: &mut [$N], ldvsl: i32, vsr: &mut [$N], ldvsr: i32, work: &mut [$N], lwork: i32, bwork: &mut [i32], info: &mut i32) { unsafe { $xgges(jobvsl, jobvsr, sort, None, n, a, lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info); } } #[inline] fn xgges_work_size(jobvsl: u8, jobvsr: u8, sort: u8, // select: ??? n: i32, a: &mut [$N], lda: i32, b: &mut [$N], ldb: i32, sdim: &mut i32, alphar: &mut [$N], alphai: &mut [$N], beta : &mut [$N], vsl: &mut [$N], ldvsl: i32, vsr: &mut [$N], ldvsr: i32, bwork: &mut [i32], info: &mut i32) -> i32 { let mut work = [ Zero::zero() ]; let lwork = -1 as i32; unsafe { $xgges(jobvsl, jobvsr, sort, None, n, a, lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, bwork, info); } ComplexHelper::real_part(work[0]) as i32 } } ) ); real_eigensystem_scalar_impl!(f32, lapack::sgges); real_eigensystem_scalar_impl!(f64, lapack::dgges);