#[doc(hidden)]; // we hide doc to not have to document the $trhs double dispatch trait. use std::num::{Zero, One, Algebraic}; use std::rand::Rand; use std::rand; use std::vec; use std::vec::{VecIterator, VecMutIterator}; use std::cmp::ApproxEq; use std::iter::FromIterator; use traits::dot::Dot; use traits::norm::Norm; use traits::iterable::{Iterable, IterableMut}; use traits::translation::Translation; mod metal; /// Vector with a dimension unknown at compile-time. #[deriving(Eq, ToStr, Clone)] pub struct DVec { /// Components of the vector. Contains as much elements as the vector dimension. at: ~[N] } double_dispatch_binop_decl_trait!(DVec, DVecMulRhs) double_dispatch_binop_decl_trait!(DVec, DVecDivRhs) double_dispatch_binop_decl_trait!(DVec, DVecAddRhs) double_dispatch_binop_decl_trait!(DVec, DVecSubRhs) mul_redispatch_impl!(DVec, DVecMulRhs) div_redispatch_impl!(DVec, DVecDivRhs) add_redispatch_impl!(DVec, DVecAddRhs) sub_redispatch_impl!(DVec, DVecSubRhs) impl DVec { /// Builds a vector filled with zeros. /// /// # Arguments /// * `dim` - The dimension of the vector. #[inline] pub fn new_zeros(dim: uint) -> DVec { DVec::from_elem(dim, Zero::zero()) } /// Tests if all components of the vector are zeroes. #[inline] pub fn is_zero(&self) -> bool { self.at.iter().all(|e| e.is_zero()) } } impl DVec { /// Indexing without bounds checking. pub unsafe fn at_fast(&self, i: uint) -> N { vec::raw::get(self.at, i) } } impl DVec { /// Builds a vector filled with ones. /// /// # Arguments /// * `dim` - The dimension of the vector. #[inline] pub fn new_ones(dim: uint) -> DVec { DVec::from_elem(dim, One::one()) } } impl DVec { /// Builds a vector filled with random values. #[inline] pub fn new_random(dim: uint) -> DVec { DVec::from_fn(dim, |_| rand::random()) } } impl DVec { /// Creates an uninitialized vec. #[inline] pub unsafe fn new_uninitialized(dim: uint) -> DVec { let mut vec = vec::with_capacity(dim); vec::raw::set_len(&mut vec, dim); DVec { at: vec } } } impl DVec { /// Builds a vector filled with a constant. #[inline] pub fn from_elem(dim: uint, elem: N) -> DVec { DVec { at: vec::from_elem(dim, elem) } } } impl DVec { /// Builds a vector filled with the result of a function. #[inline(always)] pub fn from_fn(dim: uint, f: &fn(uint) -> N) -> DVec { DVec { at: vec::from_fn(dim, |i| f(i)) } } } impl Container for DVec { #[inline] fn len(&self) -> uint { self.at.len() } } impl Iterable for DVec { #[inline] fn iter<'l>(&'l self) -> VecIterator<'l, N> { self.at.iter() } } impl IterableMut for DVec { #[inline] fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N> { self.at.mut_iter() } } impl FromIterator for DVec { #[inline] fn from_iterator>(mut param: &mut I) -> DVec { let mut res = DVec { at: ~[] }; for e in param { res.at.push(e) } res } } impl + DVecMulRhs>> DVec { /// Computes the canonical basis for the given dimension. A canonical basis is a set of /// vectors, mutually orthogonal, with all its component equal to 0.0 exept one which is equal /// to 1.0. pub fn canonical_basis_with_dim(dim: uint) -> ~[DVec] { let mut res : ~[DVec] = ~[]; for i in range(0u, dim) { let mut basis_element : DVec = DVec::new_zeros(dim); basis_element.at[i] = One::one(); res.push(basis_element); } res } /// Computes a basis of the space orthogonal to the vector. If the input vector is of dimension /// `n`, this will return `n - 1` vectors. pub fn orthogonal_subspace_basis(&self) -> ~[DVec] { // compute the basis of the orthogonal subspace using Gram-Schmidt // orthogonalization algorithm let dim = self.at.len(); let mut res : ~[DVec] = ~[]; for i in range(0u, dim) { let mut basis_element : DVec = DVec::new_zeros(self.at.len()); basis_element.at[i] = One::one(); if res.len() == dim - 1 { break; } let mut elt = basis_element.clone(); elt = elt - self * basis_element.dot(self); for v in res.iter() { elt = elt - v * elt.dot(v) }; if !elt.sqnorm().approx_eq(&Zero::zero()) { res.push(elt.normalized()); } } assert!(res.len() == dim - 1); res } } impl> DVecAddRhs> for DVec { #[inline] fn binop(left: &DVec, right: &DVec) -> DVec { assert!(left.at.len() == right.at.len()); DVec { at: left.at.iter().zip(right.at.iter()).map(|(a, b)| *a + *b).collect() } } } impl> DVecSubRhs> for DVec { #[inline] fn binop(left: &DVec, right: &DVec) -> DVec { assert!(left.at.len() == right.at.len()); DVec { at: left.at.iter().zip(right.at.iter()).map(|(a, b)| *a - *b).collect() } } } impl> Neg> for DVec { #[inline] fn neg(&self) -> DVec { DVec { at: self.at.iter().map(|a| -a).collect() } } } impl Dot for DVec { #[inline] fn dot(&self, other: &DVec) -> N { assert!(self.at.len() == other.at.len()); let mut res: N = Zero::zero(); for i in range(0u, self.at.len()) { res = res + self.at[i] * other.at[i]; } res } #[inline] fn sub_dot(&self, a: &DVec, b: &DVec) -> N { let mut res: N = Zero::zero(); for i in range(0u, self.at.len()) { res = res + (self.at[i] - a.at[i]) * b.at[i]; } res } } impl + Neg + Clone> Translation> for DVec { #[inline] fn translation(&self) -> DVec { self.clone() } #[inline] fn inv_translation(&self) -> DVec { -self } #[inline] fn translate_by(&mut self, t: &DVec) { *self = *self + *t; } #[inline] fn translated(&self, t: &DVec) -> DVec { self + *t } #[inline] fn set_translation(&mut self, t: DVec) { *self = t } } impl Norm for DVec { #[inline] fn sqnorm(&self) -> N { self.dot(self) } #[inline] fn norm(&self) -> N { self.sqnorm().sqrt() } #[inline] fn normalized(&self) -> DVec { let mut res : DVec = self.clone(); res.normalize(); res } #[inline] fn normalize(&mut self) -> N { let l = self.norm(); for i in range(0u, self.at.len()) { self.at[i] = self.at[i] / l; } l } } impl> ApproxEq for DVec { #[inline] fn approx_epsilon() -> N { fail!("Fix me.") // let res: N = ApproxEq::::approx_epsilon(); // res } #[inline] fn approx_eq(&self, other: &DVec) -> bool { let mut zip = self.at.iter().zip(other.at.iter()); do zip.all |(a, b)| { a.approx_eq(b) } } #[inline] fn approx_eq_eps(&self, other: &DVec, epsilon: &N) -> bool { let mut zip = self.at.iter().zip(other.at.iter()); do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) } } } macro_rules! scalar_mul_impl ( ($n: ident) => ( impl DVecMulRhs<$n, DVec<$n>> for $n { #[inline] fn binop(left: &DVec<$n>, right: &$n) -> DVec<$n> { DVec { at: left.at.iter().map(|a| a * *right).collect() } } } ) ) macro_rules! scalar_div_impl ( ($n: ident) => ( impl DVecDivRhs<$n, DVec<$n>> for $n { #[inline] fn binop(left: &DVec<$n>, right: &$n) -> DVec<$n> { DVec { at: left.at.iter().map(|a| a / *right).collect() } } } ) ) macro_rules! scalar_add_impl ( ($n: ident) => ( impl DVecAddRhs<$n, DVec<$n>> for $n { #[inline] fn binop(left: &DVec<$n>, right: &$n) -> DVec<$n> { DVec { at: left.at.iter().map(|a| a + *right).collect() } } } ) ) macro_rules! scalar_sub_impl ( ($n: ident) => ( impl DVecSubRhs<$n, DVec<$n>> for $n { #[inline] fn binop(left: &DVec<$n>, right: &$n) -> DVec<$n> { DVec { at: left.at.iter().map(|a| a - *right).collect() } } } ) ) scalar_mul_impl!(f64) scalar_mul_impl!(f32) scalar_mul_impl!(u64) scalar_mul_impl!(u32) scalar_mul_impl!(u16) scalar_mul_impl!(u8) scalar_mul_impl!(i64) scalar_mul_impl!(i32) scalar_mul_impl!(i16) scalar_mul_impl!(i8) scalar_mul_impl!(float) scalar_mul_impl!(uint) scalar_mul_impl!(int) scalar_div_impl!(f64) scalar_div_impl!(f32) scalar_div_impl!(u64) scalar_div_impl!(u32) scalar_div_impl!(u16) scalar_div_impl!(u8) scalar_div_impl!(i64) scalar_div_impl!(i32) scalar_div_impl!(i16) scalar_div_impl!(i8) scalar_div_impl!(float) scalar_div_impl!(uint) scalar_div_impl!(int) scalar_add_impl!(f64) scalar_add_impl!(f32) scalar_add_impl!(u64) scalar_add_impl!(u32) scalar_add_impl!(u16) scalar_add_impl!(u8) scalar_add_impl!(i64) scalar_add_impl!(i32) scalar_add_impl!(i16) scalar_add_impl!(i8) scalar_add_impl!(float) scalar_add_impl!(uint) scalar_add_impl!(int) scalar_sub_impl!(f64) scalar_sub_impl!(f32) scalar_sub_impl!(u64) scalar_sub_impl!(u32) scalar_sub_impl!(u16) scalar_sub_impl!(u8) scalar_sub_impl!(i64) scalar_sub_impl!(i32) scalar_sub_impl!(i16) scalar_sub_impl!(i8) scalar_sub_impl!(float) scalar_sub_impl!(uint) scalar_sub_impl!(int)