#[cfg_attr(rustfmt, rustfmt_skip)] use na::Matrix4; #[test] fn qrp() { let m = Matrix4::new ( 1.0, -1.0, 2.0, 1.0, -1.0, 3.0, -1.0, -1.0, 3.0, -5.0, 5.0, 3.0, 1.0, 2.0, 1.0, -2.0); let qrp = m.qrp(); assert!(relative_eq!(qrp.determinant(), 0.0, epsilon = 1.0e-7)); let (q, r, p) = qrp.unpack(); let mut qr = q * r; p.inv_permute_columns(& mut qr); assert!(relative_eq!(m, qr, epsilon = 1.0e-7)); } #[cfg(feature = "arbitrary")] mod quickcheck_tests { macro_rules! gen_tests( ($module: ident, $scalar: ty) => { mod $module { use na::{DMatrix, DVector, Matrix3x5, Matrix4, Matrix4x3, Matrix5x3, Vector4}; use std::cmp; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; quickcheck! { fn qrp(m: DMatrix<$scalar>) -> bool { let m = m.map(|e| e.0); let qrp = m.clone().qrp(); let q = qrp.q(); let r = qrp.r(); println!("m: {}", m); println!("qrp: {}", &q * &r); relative_eq!(m, &q * r, epsilon = 1.0e-7) && q.is_orthogonal(1.0e-7) } fn qrp_static_5_3(m: Matrix5x3<$scalar>) -> bool { let m = m.map(|e| e.0); let qrp = m.qrp(); let q = qrp.q(); let r = qrp.r(); relative_eq!(m, q * r, epsilon = 1.0e-7) && q.is_orthogonal(1.0e-7) } fn qrp_static_3_5(m: Matrix3x5<$scalar>) -> bool { let m = m.map(|e| e.0); let qrp = m.qrp(); let q = qrp.q(); let r = qrp.r(); relative_eq!(m, q * r, epsilon = 1.0e-7) && q.is_orthogonal(1.0e-7) } fn qrp_static_square(m: Matrix4<$scalar>) -> bool { let m = m.map(|e| e.0); let qrp = m.qrp(); let q = qrp.q(); let r = qrp.r(); println!("{}{}{}{}", q, r, q * r, m); relative_eq!(m, q * r, epsilon = 1.0e-7) && q.is_orthogonal(1.0e-7) } fn qrp_solve(n: usize, nb: usize) -> bool { if n != 0 && nb != 0 { let n = cmp::min(n, 50); // To avoid slowing down the test too much. let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); let qrp = m.clone().qrp(); let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); if qrp.is_invertible() { let sol1 = qrp.solve(&b1).unwrap(); let sol2 = qrp.solve(&b2).unwrap(); return relative_eq!(&m * sol1, b1, epsilon = 1.0e-6) && relative_eq!(&m * sol2, b2, epsilon = 1.0e-6) } } return true; } fn qrp_solve_static(m: Matrix4<$scalar>) -> bool { let m = m.map(|e| e.0); let qrp = m.qrp(); let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0); if qrp.is_invertible() { let sol1 = qrp.solve(&b1).unwrap(); let sol2 = qrp.solve(&b2).unwrap(); relative_eq!(m * sol1, b1, epsilon = 1.0e-6) && relative_eq!(m * sol2, b2, epsilon = 1.0e-6) } else { false } } fn qrp_inverse(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); if let Some(m1) = m.clone().qrp().try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) } else { true } } fn qrp_inverse_static(m: Matrix4<$scalar>) -> bool { let m = m.map(|e| e.0); let qrp = m.qrp(); if let Some(m1) = qrp.try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) } else { true } } } } } ); gen_tests!(complex, RandComplex); gen_tests!(f64, RandScalar); }