use na::{geometry::Quaternion, Matrix2, Vector3}; use num_traits::{One, Zero}; #[test] fn gemm_noncommutative() { type Qf64 = Quaternion<f64>; let i = Qf64::from_imag(Vector3::new(1.0, 0.0, 0.0)); let j = Qf64::from_imag(Vector3::new(0.0, 1.0, 0.0)); let k = Qf64::from_imag(Vector3::new(0.0, 0.0, 1.0)); let m1 = Matrix2::new(k, Qf64::zero(), j, i); // this is the inverse of m1 let m2 = Matrix2::new(-k, Qf64::zero(), Qf64::one(), -i); let mut res: Matrix2<Qf64> = Matrix2::zero(); res.gemm(Qf64::one(), &m1, &m2, Qf64::zero()); assert_eq!(res, Matrix2::identity()); let mut res: Matrix2<Qf64> = Matrix2::identity(); res.gemm(k, &m1, &m2, -k); assert_eq!(res, Matrix2::zero()); } #[cfg(feature = "proptest-support")] mod blas_proptest { use crate::proptest::{PROPTEST_F64, PROPTEST_MATRIX_DIM}; use na::{DMatrix, DVector}; use proptest::{prop_assert, proptest}; proptest! { /* * * Symmetric operators. * */ #[test] fn gemv_symm(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let a = DMatrix::<f64>::new_random(n, n); let a = &a * a.transpose(); let x = DVector::new_random(n); let mut y1 = DVector::new_random(n); let mut y2 = y1.clone(); y1.gemv(alpha, &a, &x, beta); y2.sygemv(alpha, &a.lower_triangle(), &x, beta); prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10)); y1.gemv(alpha, &a, &x, 0.0); y2.sygemv(alpha, &a.lower_triangle(), &x, 0.0); prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10)) } #[test] fn gemv_tr(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let a = DMatrix::<f64>::new_random(n, n); let x = DVector::new_random(n); let mut y1 = DVector::new_random(n); let mut y2 = y1.clone(); y1.gemv(alpha, &a, &x, beta); y2.gemv_tr(alpha, &a.transpose(), &x, beta); prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10)); y1.gemv(alpha, &a, &x, 0.0); y2.gemv_tr(alpha, &a.transpose(), &x, 0.0); prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10)) } #[test] fn ger_symm(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let a = DMatrix::<f64>::new_random(n, n); let mut a1 = &a * a.transpose(); let mut a2 = a1.lower_triangle(); let x = DVector::new_random(n); let y = DVector::new_random(n); a1.ger(alpha, &x, &y, beta); a2.syger(alpha, &x, &y, beta); prop_assert!(relative_eq!(a1.lower_triangle(), a2)); a1.ger(alpha, &x, &y, 0.0); a2.syger(alpha, &x, &y, 0.0); prop_assert!(relative_eq!(a1.lower_triangle(), a2)) } #[test] fn quadform(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let rhs = DMatrix::<f64>::new_random(6, n); let mid = DMatrix::<f64>::new_random(6, 6); let mut res = DMatrix::new_random(n, n); let expected = &res * beta + rhs.transpose() * &mid * &rhs * alpha; res.quadform(alpha, &mid, &rhs, beta); prop_assert!(relative_eq!(res, expected, epsilon = 1.0e-7)) } #[test] fn quadform_tr(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let lhs = DMatrix::<f64>::new_random(6, n); let mid = DMatrix::<f64>::new_random(n, n); let mut res = DMatrix::new_random(6, 6); let expected = &res * beta + &lhs * &mid * lhs.transpose() * alpha; res.quadform_tr(alpha, &lhs, &mid , beta); prop_assert!(relative_eq!(res, expected, epsilon = 1.0e-7)) } } }